UNIVERSIDAD

MODELO

INGENIERIA

Examen Parcial 2
Visiéon por Computadora

Jorge Humberto Sosa Garcia

Ingenieria Mecatronica

Séptimo Semestre

(Agosto / diciembre 2025)

10 de nhoviembre de 2025

Universidad Modelo Campus Mérida

INDICE

T INTRODUGCCION ...ttt ettt ettt ettt b et sttt e bt ettt ebeeseenbeeaeenbeenee e 4
2 OBIETIVOSttt ettt et et et e ettt a e et et e e et n e e e et enanee 5
2.7 ODbDJETIVO BBNEIAL. .. eniniii ittt ee et e te e et e et e eae e eaeeaneesnsanaennennn 5
A ©] o] 1= 1Y o TR =T] o= T] | od o - R 5

3 MATERIALES Y HERRAMIENTAS ...ttt ettt ettt et e et et e et et e enae e e e enanee 5
T B To) TV = PP 5
T =] (0 1V PPN 6
3.3 Archivos UtIlIZAdOS ...cuvuiiiiiiiiiiiiiiiic e 6
AMETODOLOGHA ...ttt ettt ettt ettt et e bt et e se et e e st ebeeneeaes 6
4.1 Preparacion del entorno de SimulacCion........c.veeinieiiiiiii e e e eees 7
4.2 Disefioy cargadel modelo delrobot e 8
4.3 Comunicacion con ArduinO Y JOYSHICK cuueuiuiiiiiiiici e e e 9
4.4 Configuracion del entornO VIrtUAL c..eu.ieeieeeiiriniie et e e e v e e eneas 11
4.5 Implementacioén del sistema de vision y deteccion ArUCOevvvenieiiiniiciiiceienene, 13
4.6 Camaras virtuales ¥y VisualiZaCiONcuiieeniiiiii e e e e e 15
1. Camara montada en el robot (Vision subjetiva)coveveiiiiiiiiiiieeeeeen 15

2. Camara externa tipo PEIrSECUCIONcuii i ittt ee e e e tee e ee e e e e eeaeeneaaanens 16

3. Camarafija tipo VIIlanCia c..cuuniniiiii it e e e e eas 17

5 CODIGO ..ttt ettt ettt ettt ettt ettt sttt b e sttt et 18
5.1 EXplicacion COAIiZ0 ArUINOuuiuiiiiiri it eie e eete e eaeenenetenseaeneaaensasanensennn 18
5.2 EXplicacion cOdigo PYthonceeeii et r e e e e e e 20

B RESULTADO ...ttt ettt ettt et ettt et e e e et e e e et e ta e eaaeeanaeens 25
6.1 Conexion funcional Arduino—PyBuUllet........cceiiniii e 26
6.2 Textura ArUCO COMO PArEA . uuininiiiiei ettt e e e et eteeeee e e e e e eaeseaeaannns 26
6.3 Deteccion de MarCador ATUCOcueienieniiniiiii ettt et eeae 27
6.4 Calculo y visualizacion de diStancCiavuviiiiiiiiiiiii e e ae e eens 27
6.5 Implementacion de cAmaras MULIPLEScueuiiiinieiieieeee e e e 27

6.6 Visualizacion entieMPO r€aL ..uuin it aeas 28

0.7 PruEbas 18aAlIZATAS ... et —aaas 28

7 CONCLUSIONES ... ettt ettt et e et et e e et e e e e en e ena e eaa e enneenaaens 28
B ANEXOSt ettt et e e e et et et e e e ea et eaaae 29
8.1 COAIZO ArAUINO ..ceeeineeiie ettt ettt et et et e et et e e e eea s enneeneeennaes 29
8.2 COAIZO PYTNON ettt e e et e e e e ea e e e e e e e e eaneaennannanns 30

9 REFERENCIAS ... 37

1 INTRODUCCION

Enla actualidad, los sistemas de visién por computadora se han convertido en herramientas
clave para aplicaciones en robodtica movil, automatizacion industrial y navegacion
auténoma. Estos sistemas permiten a los robots obtener informacion del entorno a través
de sensores visuales, procesarla en tiempo real y tomar decisiones informadas para
ejecutar tareas especificas.

El presente proyecto tiene como objetivo integrar una simulacién en el entorno fisico virtual
PyBullet con capacidades de visién por computadora, utilizando la biblioteca OpenCV vy
marcadores ArUco. Se desarrolla un sistema que permite a un robot madvil simulado
detectar un marcador en una pared, calcular su distancia con respecto al mismo y
visualizarla mediante lineas virtuales en el entorno.

El control del movimiento del robot se realiza de forma remota mediante un joystick fisico
conectado a un microcontrolador Arduino, el cual envia instrucciones al entorno simulado
por medio de comunicacion serial. Esta integracidon permite emular un entorno realista de
navegacion robdtica, donde se combinan percepcioén visual, control remoto y simulacién
fisica de alta precision.

Asimismo, se emplean multiples camaras dentro del entorno: una fija para supervisar el
area de trabajo desde una perspectiva global y otra montada sobre el robot, que cumple la
funcidén de “visién en primera persona” para realizar la deteccidon del marcador. A través de
este enfoque se busca emular condiciones reales de operacion, analisis espacial y
localizacion visual.

Este trabajo constituye una base sélida para el desarrollo de futuras aplicaciones en
robdtica auténoma, al combinar herramientas de simulacidon, percepcién visual y control
fisico a través de interfaces hombre-maquina.

2 OBJETIVOS

2.1 Objetivo general

Desarrollar un entorno de simulacion en PyBullet que permita controlar un robot moévil a

través de un joystick fisico, integrando visién por computadora con deteccion de
marcadores ArUco para estimar la distancia entre el robot y una pared con textura visual,
empleando técnicas de percepcion visual y comunicacion serial mediante Arduino.

2.2 Objetivos especificos

Implementar un entorno de simulacion fisica utilizando PyBullet con un plano de
suelo, una pared texturizada con un marcador ArUco y un robot madvil con ruedas.
Integrar una camara virtual fija y una camara montada en el robot para capturar
imagenes desde distintas perspectivas del entorno.

Detectar marcadores ArUco en tiempo real utilizando OpenCV y calcular la distancia
entre el roboty el marcador en coordenadas 2D y 3D.

Controlar el desplazamiento del robot mediante un joystick fisico conectado a un
Arduino, utilizando comunicacién serial como interfaz entre el entorno fisico y el
virtual.

Visualizar las distancias calculadas dentro del entorno mediante lineas y
anotaciones graficas superpuestas en laimagen.

Optimizar el rendimiento del sistema para asegurar una simulacion fluida y en
tiempo real, reduciendo la carga computacional sin comprometer la funcionalidad.

3 MATERIALES Y HERRAMIENTAS

3.1 Software

Python 3.10+: Lenguaje principal utilizado para la programacién del entorno de
simulaciény procesamiento de imagen.

PyBullet: Motor de simulacién fisica en tiempo real empleado para crear el entorno
3D, simular el movimiento del robot y generar las camaras virtuales.

OpenCV (cv2): Biblioteca utilizada para la capturay procesamiento de imagenes, asi
como para la deteccion de marcadores ArUco.

e Visual Studio Code: Entorno de desarrollo integrado (IDE) utilizado para la escritura,
depuraciéony ejecucion del cédigo fuente.

e Microsoft Word: Procesador de texto utilizado para la elaboracién del reporte
técnico.

e PySerial: Libreria de comunicacion serial entre Arduino y Python.

3.2 Hardware

Arduino UNO: Microcontrolador encargado de leer el estado del joystick y enviar las
instrucciones de movimiento al entorno simulado.

Joystick: Controlador analdégico de dos ejes utilizado como interfaz fisica para el
desplazamiento del robot.

Cable USB tipo A a B: Para la conexion entre el Arduino y el equipo de cOmputo.

3.3 Archivos utilizados

powerchair.urdf: Archivo URDF que define la geometria, propiedades fisicas y articulaciones
del robot simulado.

arucol.jpeg: Imagen con el marcador ArUco utilizado como referencia visual en la pared.

4 METODOLOGIA

La presente seccidon describe detalladamente el proceso llevado a cabo para el desarrollo,
implementacion y evaluacion del entorno de simulacién utilizado en este proyecto. Se
abordan las etapas técnicas relacionadas con la configuracién del simulador fisico, la
integracion del modelo del robot mdévil, la implementacién de la comunicacién con
hardware externo mediante Arduino, y la incorporacién de vision artificial para la deteccién
de marcadores visuales. Cada una de estas fases fue disefiada para replicar, de manera
precisa, el comportamiento de un sistema mecatrdnico real dentro de un entorno virtual
controlado. El enfoque adoptado permite una evaluacion sistematica del rendimiento del
robot ante distintas condiciones de operacidn, asi como el analisis visual de su movimiento
y orientacién con respecto a un entorno artificialmente estructurado.

4.1 Preparacion del entorno de simulacioén

Para llevar a cabo la simulacidn del sistema mecatrénico, se utilizé el motor fisico PyBullet,
una herramienta en Python disefiada para entornos de robética, dindmica y visualizacién
3D. La primera etapa consistio en la instalacion de las librerias necesarias para ejecutar el
entorno, entre ellas: pybullet, numpy, opencv-python y pyserial. Estas bibliotecas
permitieron, respectivamente, la simulacion fisica, el procesamiento de datos numéricos,
la vision por computadora y la comunicacion con dispositivos externos como Arduino.

Una vez cargadas las dependencias, se procedio a configurar el entorno de simulacién. Se
inicializd la fisica con gravedad terrestre y un paso de simulacién de 1/240 segundos para
lograr una respuesta fluida y realista. El entorno fue complementado con la carga de un
plano base utilizando el archivo plane.urdf, que actiia como el suelo de la escena.

Adicionalmente, se incorporé una pared vertical que funciona como superficie de referencia
visual. Esta pared fue generada también a partir de un plane.urdf, pero rotado 90 grados
sobre su eje Yy 180 grados en Z, de modo que actie como un muro perpendicular al suelo.
Sobre esta superficie se aplicd unatextura personalizada con un patrén de marcador ArUco,
la cual fue cargada mediante la funcion p.loadTexture() y aplicada con
p.changeVisualShape(). Esto permitié utilizar dicha pared como punto de referencia para
calculos de posicion, distancia y reconocimiento visual durante el movimiento del robot.

llustracion 1. Cédigo del entorno

4.2 Diseno y carga del modelo del robot

Para la simulacién del sistema mdvil se utilizé un modelo de silla de ruedas motorizada,
representando un robot diferencial con cuatro ruedas, dos de las cuales estan directamente
impulsadas. Este modelo se encuentra descrito mediante un archivo URDF (Unified Robot
Description Format), el cual define su geometria, propiedades fisicas y articulaciones.
Dicho archivo fue cargado en el entorno de simulacion PyBullet mediante la instruccion
loadURDF, ubicandolo en una posicidn inicial cercana al origen del mundo virtual.

Elrobot cuenta con los siguientes elementos relevantes para la simulacién:

e Cuerpo base: Representa la estructura principal del robot, con propiedades fisicas
como masa, friccion lateral y amortiguamiento.

e Ruedas motrices: Controladas mediante actuadores virtuales bajo el modo
VELOCITY_CONTROL, lo que permite el movimiento auténomo en respuesta a
comandos.

e Punto de montaje de camara: Se utiliza un enlace especifico (camera_link) para
simular una cdmara frontal montada en el robot, desde la cual se emula la visiéon del
entorno.

Ilustracion 2. Visualizacion de "powerchair.urdf"

Durante la carga, se aplicaron parametros de dindmica personalizados a cada componente
del modelo. Estoincluyé lareduccién de lainerciayelincremento del rozamiento para evitar
comportamientos no deseados como el deslizamiento excesivo o movimientos inestables.
Asimismo, se ajustaron las propiedades de las ruedas para mejorar el desempefio en giros
y trayectorias rectas, asegurando una simulacién mas realista.

llustracion 3. Dinamica del robot

Este modelo sirve como base para todas las pruebas posteriores, permitiendo la interaccién
del robot con el entorno, asi como su control a través de comandos externos y la
observacion de su comportamiento ante estimulos visuales simulados.

4.3 Comunicacién con Arduino y joystick

La interaccion fisica entre el usuario y el entorno simulado se logra mediante la integracion
de un joystick analdgico conectado a una placa Arduino, la cual actia como intermediario
para interpretar las senales del controlador y enviarlas al entorno de simulacion a través de
una conexion serial.

Illustracion 4. Diagrama de conexion eléctrica

En el Arduino, se implementa un programa que lee las senales del joystick (valores
analdgicos de los ejes Xy Y) y las convierte en comandos de texto simples (por ejemplo,
"FORWARD", "BACKWARD", "LEFT", "RIGHT"). Estos comandos son enviados continuamente
por el puerto serial a una tasa de 9600 baudios.

@ Joystick simple | Arduino 1.8.19 (Windows Store 1.8.57.0] — (m]
File Edit Sketch Tools Help
=
90 BEH
Joystick_simple @ come - o x

// —-- Pines del joys | Send
int ejeX = n4; [/ Pi
int ejeYy = a5; // Pi

sTOP

RIGHT
. RIGHT
int valorx = 0;
. RIGHT
int valory = 0;
STOP
. FORWARD
void setup() { oRmARD
Serial.begin(9600) ;
} FORWARD
sTor
. STOP
void loop() {
STOP
// Leer los valores|
BACKWARD
valorX = analogRead)
BACEWARD
valorY = analogRead)
STOP
. sTOP
// --- Deteccibm de

sTOP
STOP

if (valory > 600) {
Serial.println("H

, sTor
STOP
else if (valory < 4
Serial.println ("5 [JAutesaol [[]Show tmestamp Hewline | |os00baud Clear output

i

llustracion 5. Puerto serial del Arduino IDE

En Python, se utiliza la biblioteca pyserial para establecer la comunicacidon entre la
computadora y la placa Arduino. El programa permanece a la espera de datos entrantes
desde el puerto designado (COMS8 en este caso), y cuando se detecta un comando valido,
se interpreta y se traduce en una instruccién de movimiento para el robot simulado.

La funcidon encargada de interpretar los comandos (mover_carrito) aplica velocidades
especificas a cada una de las ruedas del robot utilizando control de velocidad
(VELOCITY_CONTROL) con fuerza maxima limitada. Esto permite movimientos
diferenciales, permitiendo avanzar, retroceder o girar segun la direccion del joystick.

llustracion 6. Codigo de movimiento del robot

Este enfoque proporciona una forma intuitiva de controlar el robot dentro del entorno virtual
y representa una aproximacion realista a escenarios de teleoperacion o conduccion asistida
mediante dispositivos fisicos.

4.4 Configuracion del entorno virtual

La simulacién del entorno virtual se desarrolla utilizando la biblioteca PyBullet, que permite
representar de manera fisica y visual un espacio tridimensional con elementos interactivos
y dinamicos. Este entorno fue configurado cuidadosamente para replicar condiciones de
navegacion y percepcion visual utiles en pruebas de robética movil.

Primero, se establece una superficie base utilizando el archivo plane.urdf, que actiia como
el plano de rodadura sobre el cual se desplaza el robot. Posteriormente, se posiciona una
pared perpendicular al plano, la cual utiliza como textura una imagen que contiene un
marcador ArUco. Esta pared se representa también mediante plane.urdf, rotado 90° en el
eje Yy 180° en el eje Z para ubicarlo de manera vertical frente al robot.

8% Bullet Physics ExampleBrowser using OpenGL3+ [btgl) Release build - o x

e iew

“annTargetPos=5.00,0,00,2.00, dist=10.24, pitch=-0.60, yaw=-83.60 Status Ok

llustracion 7. Pared de Arucos

El marcador ArUco simula un punto de referencia visual dentro del entorno. Se utiliza una
textura en formato .jpeg que contiene dicho marcador, la cual se carga con la funcion
p.loadTexture() y se aplica a la pared mediante p.changeVisualShape().

Ademas, se configuran camaras virtuales dentro del entorno para capturarimagenes desde
distintas perspectivas:

e (Camara montada en el robot: simula una camara frontal que avanza junto al roboty
permite realizar tareas de vision por computadora, como la deteccion del marcador
ArUco.

e (Camara fija (de vigilancia): ubicada en un punto elevado y alejado del entorno, esta
camara permite observar desde una perspectiva global el comportamiento del robot
en tiempo real.

pod

! Camara Fija ! Camara Robot — O

o |

llustracion 8. Camaras virtuales configuradas

Finalmente, la gravedad, el paso del tiempo (1/240 s), y las propiedades fisicas del entorno
(como friccidn y restitucién) fueron ajustadas para mantener estabilidad en la simulaciony
realismo en la dinamica del movimiento.

4.5 Implementacion del sistema de vision y deteccion ArUco

Una de las funcionalidades clave del sistema es la capacidad del robot para detectar
marcadores visuales en su entorno mediante vision artificial. Para ello se utilizd la biblioteca
OpenCV, que provee herramientas especificas para la deteccién de marcadores ArUco,
ampliamente utilizados en aplicaciones de localizacidon y navegacion.

La camara montada en el robot captura imagenes periédicamente desde el vinculo frontal
(link) definido en el modelo URDF del robot. Esta camara virtual se configura utilizando la

funcion p.getCameralmage(), en combinacidon con matrices de vistay proyeccion obtenidas
mediante p.computeViewMatrix() y p.computeProjectionMatrixFOV() respectivamente.
Estas matrices simulan el comportamiento de una camara en perspectiva, considerando su
posicion, orientacidon, campo de vision y planos de recorte.

Illustracion 9. Camara montada

Cadaimagen capturada es convertida a escala de grises y posteriormente procesada por el
detector ArUco. Elflujo general es el siguiente:

e Captura de imagen desde PyBullet.
e Conversiéon aformato OpenCV (RGB y escala de grises).
e Deteccidon de marcadores con cv2.aruco.ArucoDetector().
e Dibujo del marcador detectado en laimagen con cv2.aruco.drawDetectedMarkers().
e Calculo de la posicién del marcador en laimagen (coordenadas del centro).
e Estimacion de la distancia entre el robot y el marcador en dos planos:
o 2D: Distancia en pixeles entre el centro de laimagen y el marcador.
o 3D: Distancia en el mundo simulado, usando la posicion absoluta del roboty
la pared.

Para mejorar la comprensidn visual, se anade una linea sobre la imagen entre el robot y el
marcador, y también una linea tridimensional en PyBullet que conecta ambos puntos con
un trazo rojo, utilizando p.addUserDebugLineg().

e fiew
r—

% Jarams
B Camara Fija

I T |

B

Ilustracion 10. Lineas de visualizacion

Este sistema proporciona una retroalimentacion clara y en tiempo real del entorno visual
percibido porelrobot, lo que sienta las bases para futuras implementaciones de navegacion
autéonoma o localizacién basada en vision.

4.6 Camaras virtuales y visualizacion

El sistema desarrollado hace uso de multiples camaras virtuales en el entorno simulado
para facilitar tanto el monitoreo como la depuracién del comportamiento del robot. Estas
camaras no solo permiten visualizar la escena desde diferentes perspectivas, sino que
también cumplen funciones clave dentro del sistema de visién artificial.

Se implementaron tres tipos de camaras:

1. Camara montada en el robot (vision subjetiva)

Esta camara esta acoplada a un vinculo especifico del robot, simulando una camara fisica
que permitiria la percepcion directa del entorno. Se encuentra orientada hacia el frente del
roboty proporciona una vista en primera persona.

e Esta camara es utilizada para la deteccion del marcador ArUco, como se explicé en
el apartado anterior.

e Laimagen es capturada cada cierto niumero de frames para optimizar el rendimiento.

X

B | Camara Robot — O

I

llustracion 11. Camara montada

2. Camara externa tipo persecucion

Ademas de la camara montada, se emplea una camara externa que sigue al robot desde
atras. Esta vista ofrece al usuario una perspectiva general del movimiento y orientacién del
robot en la escena.

e Se actualiza en tiempo real utilizando la funcién p.resetDebugVisualizerCamera(),
ajustando su posicion en funcion de la ubicacion y orientacion del robot.

e Esta camara facilita el seguimiento visual del desplazamiento y posibles colisiones.

llustracion 12. Camara de seguimiento

3. Camarafija tipo vigilancia

Con elfin de obtenerunavista general del entorno, se agregd una camara estaticay elevada,
ubicada en una posicion estratégica detras del robot, mirando hacia el centro del area de
trabajo.

e Se configuro mediante las funciones p.computeViewMatrix() y
p.computeProjectionMatrixFOV() para definir su orientacién y pardmetros dpticos.

e Su salida se muestra en una ventana separada mediante OpenCV, permitiendo
observar desde una perspectiva de “seguridad” o supervision.

B} Camara Fija

o

llustracion 13. Camara de vigilancia/fija

Cada camara virtual contribuye al monitoreo de diferentes aspectos del sistema y
complementa el andlisis visual del desempefio del robot, ofreciendo al usuario una
experiencia completa e inmersiva en el entorno simulado.

5 CODIGO

5.1 Explicacion codigo Arduino

Ff ——— Pines del joystick ——-
int ejeX = A4; // Pin conectado a VEX

int eje¥ = A5; // Pin conectado a VEY

int valorX = 0;

int wvalor¥

oid setup() |
Serial. :%;':{BGDD);
}
volid loop() {

// Leer los valores analogicos

valor¥X = analogRead(ejeX);

valor¥ = analogRead(ejeY);

Illustracion 14. Fragmento 1 Arduino

// ——- Deteccidn de direccidn ---—
if (wvalor¥ > €00) {
Serial.println ("FORWARD") ;

else 1f (walor¥Y < 400) {
Serial.println ("BACEWARD") ;

1

else 1f (wvaloxrX > €00) {
Serial.println{"LEFT") ;

1

else 1f (walorX < 400) {
Serial.println("RIGHT") ;

}

el=e |

Serial.println("STOP");

d=lay (200) ; // Pequefia pausa para evitar lecturas muy rapidas

llustracion 15. Framento 2 Arduino

Este cédigo de Arduino permite interpretar los movimientos de un joystick analégico para
enviar comandos de direccioén a través del puerto serial. Se definen los pines analégicos
A4y A5 para leer los ejes X e Y del joystick, y en el loop() se ejecuta la lectura continua de
estos valores mediante analogRead(). Segun los valores obtenidos (entre 0y 1023), el
programa determina si el joystick se esta moviendo hacia adelante, atras, izquierda o
derecha comparando los valores con umbrales (mayores a 600 o menores a 400).

Por ejemplo, si el eje Y es mayor a 600, se interpreta como un movimiento hacia adelante
("FORWARD"), mientras que si es menor a 400, indica un retroceso ("BACKWARD"). Lo
mismo aplica para el eje X con los comandos de giro. Si el joystick no se mueve lo
suficiente en ninguna direccidn (es decir, permanece en una posicion central), se envia el
comando "STOP". Ademas, se incluye un delay(200) para evitar lecturas excesivamente
rapidas que podrian causar inestabilidad en la deteccion. Este script es util para controlar
un sistema robdtico mediante sehales simples y claras enviadas por comunicacion serial.

5.2 Explicacion codigo Python

26 yptimiz:

llustracion 16. Fragmento 1 Python

Se importan las librerias necesarias para la simulacion fisica (pybullet), procesamiento de
imagen (cv2, numpy) y comunicacién con el hardware (serial, time). Ademas, se configura
el puerto serial para recibir comandos desde un joystick conectado a un Arduino.

llustracion 17. Fragmento 2 Python

Este bloque establece la conexidon con la GUI de PyBullet, configura la gravedad, el paso de
simulacion (para mayor precision) y carga un plano como superficie base donde se movera
el robot.

Ilustracion 18. Fragmento 3 Python

Se carga una imagen (aruco1.jpeg) como textura y se aplica a un plano vertical, simulando
una pared con un marcador ArUco pegado. Este plano esta rotado 90°en Yy 180° en Z para
que actie como una pared frente al robot.

llustracion 19. Fragmento 4 Python

Se carga el robot desde un archivo URDF, se identifica qué uniones son ruedas y se ajustan
los parametros de fisica (como friccién, masa e inercia) tanto del cuerpo principal como de
las ruedas, mejorando el realismo del movimiento y la estabilidad.

llustracion 20. Fragmento 5 Python

Se posiciona la camara principal del entorno visual 3D para ver desde arriba al robot, util
durante el desarrollo para verificar el estado general de la simulacién.

llustracion 21. Fragmento 6 Python

Se definen parametros clave para el movimiento del robot (velocidades, fuerza, etc.), asi
como los parametros Opticos de la camara montada en el robot (angulo de visién,
resolucién, plano de visién, etc.). También se ajusta la cdmara tipo persecuciéon (32
persona).

llustracion 22. Fragmento 7 Python

Se configura una camara externa estatica con vista elevada desde atras. Esta vista fija
simula una camara de seguridad que observa toda el area de trabajo.

Illustracion 23. Fragmento 8 Python

Se define una funcién que traduce comandos como "FORWARD", "LEFT", etc., en
velocidades individuales para las 4 ruedas. Esto permite que el robot avance, retroceda o
gire de acuerdo con la entrada recibida desde el joystick via Arduino.

llustracion 24. Fragmento 9 Python

Se configura el diccionario de marcadores ArUco que se usaran para deteccion visual. Aqui
se utiliza el tipo DICT_4X4_50, adecuado para entornos de prueba pequefios. Se crea el
detector con parametros estandar.

llustracion 25. Fragmento 10 Python

Ilustracion 26. Fragmento 11 Python

Este bloque contiene todo el ciclo principal de simulacién:

e Lecturade comandos deljoystick: Se leen comandos enviados desde el Arduinoy se
ejecuta el movimiento correspondiente.

e (Camara de persecucion del robot: Calcula la posicion detras del robot para una
camara virtual que lo sigue.

e Capturay analisis de la camara del robot: Cada 5 ciclos, se toma una imagen desde
la camara montada en el robot. Luego, se procesa para detectar marcadores ArUco
y calcular distancias. Se dibujan lineas y textos en la imagen para mostrar la
deteccion.

e Captura desde camara fija: Cada 10 ciclos se obtiene una imagen desde la camara
fija.

e Finalizacién de simulacién y control de bucle: Verifica si se ha presionado la tecla
ESC para cerrar las ventanas de OpenCV, avanza un paso de simulacidon y espera el
tiempo definido.

llustracion 27. Fragmento 12 Python

Unavez que se rompe el bucle (porejemplo, al presionar ESC), se cierrantodas las ventanas
de OpenCVy se desconecta de PyBullet limpiamente.

6 RESULTADO

dle ‘iew
“xplorer | Test Jarams j;
: ﬂ
|
=
b
® | Camara Robot = o X

Ilustracion 28. Cédigo apenas inicia

darams =

8! Camara Robot == u] X

- I

~amTargetPos=0.60,-0.02,0.00, dist=1.80, pitch=-25.00, yaw=45,00 Status: OK

Ilustracion 29. Cédigo en uso

Durante el desarrollo del proyecto se logré implementar exitosamente un entorno de
simulacién utilizando PyBullet que integra hardware (joystick + Arduino) con visién
computacional (deteccién de marcadores ArUco) en un robot moévil simulado. A
continuacion, se describen los principales resultados obtenidos:

6.1 Conexion funcional Arduino—PyBullet

Se establecidé una comunicacion serial entre el Arduino y el entorno de simulaciéon en
Python. El Arduino, conectado a un joystick fisico, fue capaz de enviar cuatro comandos
distintos que representan las direcciones basicas de movimiento: adelante, atras, izquierda
y derecha. Estos comandos fueron interpretados en tiempo real por el script en Pythony
traducidos en movimiento para el robot simulado en PyBullet.

6.2 Textura ArUco como pared

Inicialmente se intentd aplicar una imagen de ArUco como textura sobre una geometria 3D
completa (por ejemplo, un cubo o una caja), pero esta envolvia toda la figura y distorsionaba

laimagen. La solucién fue utilizar un objeto plano (plane.urdf) como "pared vertical" y rotarlo
para que simule una superficie vertical frente al robot. Al aplicar la textura de los
marcadores ArUco a este plano, se obtuvo una visualizacion clara y funcional para el
reconocimiento.

6.3 Deteccion de marcador ArUco

Mediante la libreria OpenCV y su médulo cv2.aruco, se implementd un sistema de vision
artificial que detecta marcadores ArUco visibles por la camara del robot. El sistema fue
capaz de:

e |dentificar correctamente la ID del marcador.
e Calcular ladistancia en 2D (plano de laimagen)y en 3D (espacio real de simulacién)
entre el centro del roboty el centro del marcador.

6.4 Calculo y visualizacion de distancia

Se implementé una visualizacién adicional que traza una linea roja desde el robot hasta el
marcador detectado. Esta linea permite verificar visualmente la distancia calculadaen 3Dy
se actualiza dinamicamente en cada ciclo de simulacion. También se sobrepuso la
distancia en unidades sobre laimagen RGB para retroalimentacion visual.

6.5 Implementacién de camaras multiples

Se incorporaron tres vistas diferentes para mejorar la supervision del entorno:

e Camara principal del simulador (debug visualizer): sigue automaticamente al robot
desde un angulo de 45° por detras y ligeramente elevado.

e (Camara del robot (simulada): montada sobre un link especifico del URDF, simula la
vision que tendria una camara montada fisicamente.

e Camara fija (vigilancia): colocada detras del escenario y elevada, apunta hacia la
zona de trabajo, permitiendo supervisar el comportamiento general del entorno y el
movimiento del robot.

6.6 Visualizacion en tiempo real

Se desplegaron las imagenes obtenidas de la cdmara fija y la del robot en ventanas
separadas utilizando OpenCV. Esto permitid una mejor comparaciéon entre el entorno
generaly lo que "ve" el robot, ademas de validar en tiempo real la deteccién y el calculo de
distancia a los marcadores.

6.7 Pruebas realizadas

Se realizaron pruebas desplazando el robot hacia diferentes posiciones respecto al plano
con los marcadores ArUco. En todos los casos, el sistema respondié correctamente,
detectando el marcador y mostrando la informacion correspondiente. Se comprobaron
diferentes distancias y orientaciones, observando coémo se actualizaban la linea visual, los
datos y las camaras.

7 CONCLUSIONES

El presente proyecto permitié integrar conocimientos de simulacion robdtica, visién por
computadora y sistemas embebidos, logrando la implementacién exitosa de un entorno
interactivo en PyBullet controlado mediante un joystick fisico conectado a un Arduino.

Uno de los principales aprendizajes fue la correcta estructuracion del entorno virtual,
enfrentando desafios como la aplicacién de texturas (en este caso, patrones ArUco) sobre
objetos tridimensionales. A pesar de las limitaciones iniciales para plasmarimagenes sobre
un cubo o superficie envolvente, se encontré una solucion funcional y eficiente al utilizar
planos verticales como paredes texturizadas, permitiendo un reconocimiento preciso del
marcador por parte del sistema de vision.

La incorporaciéon del médulo ArUco de OpenCV demostrd ser una herramienta confiable
para la deteccidon y localizacién de marcadores, lo cual permitié calcular distancias
relativas en dos y tres dimensiones entre el robot y el objetivo. Adicionalmente, se integré
una representacion visual clara de dicha distancia mediante una linea trazada en el entorno
de simulacion.

La utilizacion de multiples camaras —una fija, una montada en el robot y otra externa de
supervision— enriquecié considerablemente la visualizacion del comportamiento del
sistema, facilitando la validacion del movimiento, la deteccidn visual y el seguimiento del
robot en todo momento.

El uso del joystick fisico como interfaz de control afadié un componente de interaccion
realista y practica, conectando el entorno fisico con la simulacién, lo cual refuerza la
comprension de los conceptos de controly percepcién en robdtica mavil.

Enresumen, se alcanzaron los objetivos propuestos y se logré un entorno funcional, versatil
y extensible, el cual puede servir como base para futuros trabajos de investigacion o
desarrollo mas complejos en areas como navegacioén autébnoma, mapeo o visiéon avanzada.

8 ANEXOS

8.1 Cédigo Arduino

// --- Pines del joystick ---
int ejeX = A4; // Pin conectado a VRX

int ejeY = A5; // Pin conectado a VRY

int valorX = 0;

int valorY = 0;

void setup() {

Serial.begin(9600);

}

void loop() {

// Leer los valores analégicos
valorX = analogRead(ejeX);

valorY = analogRead(ejeY);

/1 --- Deteccion de direccion ---

if (valorY > 600) {
Serial.println("FORWARD");

}

else if (valorY < 400) {
Serial.println("BACKWARD");

}

else if (valorX > 600) {
Serial.println("LEFT");

}

else if (valorX <400) {
Serial.println("RIGHT");

}

else{

Serial.println("STOP");

}

delay(200); // Pequefa pausa para evitar lecturas muy rapidas

}

8.2 Cédigo Python

import pybullet as p

import pybullet_data
import serial

import time

import numpy as np

import cv2

--- Configuracioén del puerto serial ---
arduino = serial.Serial('COM8', 9600, timeout=0.1)

time.sleep(2)

--- Inicializacién de PyBullet ---

p.connect(p.GUI)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
p.resetSimulation()

p.setGravity(0, 0, -9.81)

p.setTimeStep(1/ 240)

p.loadURDF("plane.urdf")

--- Pared con textura ArUco ---

texture_path = "aruco1.jpeg"

texture_id = p.loadTexture(texture_path)

wall_id = p.loadURDF("plane.urdf",
basePosition=[3, 0, 2],
baseOrientation=p.getQuaternionFromEuler([0, 1.5708, 3.1416]))

p.changeVisualShape(wall_id, -1, textureUniqueld=texture_id)

--- Robot ---
robot = p.loadURDF("powerchair.urdf", [0, 0, 0.02], useFixedBase=False)

wheels =[0, 1, 2, 3]

--- Dinamica ---
p.changeDynamics(robot, -1,
mass=5,
locallnertiaDiagonal=[0.05, 0.05, 0.02],
lateralFriction=1.4,
linearDamping=0.08,

angularDamping=0.12

for win range(p.getNumlJoints(robot)):
p.changeDynamics(robot, w,
lateralFriction=1.5,
rollingFriction=0.02,
spinningFriction=0.02,
linearDamping=0.04,
angularDamping=0.06,

restitution=0.0

--- Camara externa PyBullet ---

p.resetDebugVisualizerCamera(2.5, 90, -30, [0.5, 0, 0.1])

--- Movimiento y camara del robot ---
v_forward = 85

v_turn =85

v_stop=0

force_value = 300
camera_link=4

width, height = 320, 240
fov =90

aspect = width / height
near, far=0.01, 3.0
chase_distance=1.5

chase_height=0.5

--- Camarafija ---

fixed_cam_pos =[-4, 0, 3]

look_at_pos =10, 0, -1]

up_vector =10, 0, 1]

fixed_view_matrix = p.computeViewMatrix(fixed_cam_pos, look_at_pos, up_vector)

fixed_projection_matrix = p.computeProjectionMatrixFOV(60, 1.0, 0.1, 10.0)

--- Movimiento ---
def mover_carrito(direccion):
if direccion == "FORWARD": vel = [v_forward] * 4
elif direccion == "BACKWARD": vel = [-v_forward] * 4
elif direccion =="LEFT": vel = [-v_turn, v_turn, -v_turn, v_turn]

elif direccion =="RIGHT": vel = [v_turn, -v_turn, v_turn, -v_turn]

else: vel =[v_stop] * 4

fori, win enumerate(wheels):
p.setlointMotorControl2(robot, w, p.VELOCITY_CONTROL,

targetVelocity=vel[i], force=force_value)

--- Detector ArUco ---
aruco_dict = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_4X4_50)
parameters = cv2.aruco.DetectorParameters()

detector = cv2.aruco.ArucoDetector(aruco_dict, parameters)

--- Simulacién ---
frame_counter=0

last._ command =

while True:
if arduino.in_waiting > 0:
comando = arduino.readline().decode().strip()
if comando and comando !=last_ command:
mover_carrito(comando)

last._ command = comando

base_pos, base_ori = p.getBasePositionAndOrientation(robot)
rot_mat = p.getMatrixFromQuaternion(base_ori)
forward_vec = np.array([rot_mat[0], rot_mat[3], rot_mat[6]])

chase_pos = np.array(base_pos) - forward_vec * chase_distance

chase_pos[2] += chase_height

p.resetDebugVisualizerCamera(1.8, 45, -25, base_pos)

if frame_counter % 5 ==0:
try:
state = p.getLinkState(robot, camera_link)
cam_pos = state[0]
cam_ori = p.getMatrixFromQuaternion(state[1])
target_pos =]
cam_pos[0] + 0.2 * cam_ori[0],
cam_pos[1]+ 0.2 * cam_ori[3],
cam_pos[2] + 0.2 * cam_ori[6],
]
view_matrix = p.computeViewMatrix(cam_pos, target_pos, [0, O, 1])
projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near, far)
img = p.getCameralmage(width, height, view_matrix, projection_matrix)

rgb = np.reshape(img[2], (height, width, 4))[:, :, :3].astype(np.uint8)

gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)

corners, ids, _ = detector.detectMarkers(gray)

if ids is not None:
cv2.aruco.drawDetectedMarkers(rgb, corners, ids)
aruco_pos = np.mean(corners[0][0], axis=0)
robot_pos_2d = [width // 2, height]
dist_2d = np.linalg.norm(robot_pos_2d - aruco_pos)

aruco_world_pos = np.array([3, 0, 2])

robot_world_pos = np.array(base_pos)

dist_3d = np.linalg.norm(robot_world_pos - aruco_world_pos)

cv2.line(rgb, tuple(robot_pos_2d), tuple(aruco_pos.astype(int)), (0, 0, 255), 2)

cv2.putText(rgb, f"{dist_3d:.2f} u", (int(aruco_pos[0]), int(aruco_pos[1]) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)

p.addUserDebuglLine(aruco_world_pos, robot_world_pos, [1, 0, 0], 2, lifeTime=0.1)

cv2.imshow("Camara Robot", rgb)
except Exception as e:

print("Error camara robot:", e)

if frame_counter % 10 ==0:
img_fixed = p.getCameralmage(240, 240, fixed_view_matrix, fixed_projection_matrix)
rgb_fixed = np.reshape(img_fixed[2], (240, 240, 4))[:, :, :3].astype(np.uint8)

cv2.imshow("Camara Fija", rgb_fixed)

if cv2.waitKey(1) & OxFF == 27:

break

p.stepSimulation()
frame_counter +=1

time.sleep(1/240)

cv2.destroyAllWindows()

p.disconnect()

9 REFERENCIAS

e Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
https://opencv.org/

e PyBullet. (2023). PyBullet Physics SDK Documentation. https://pybullet.org/

e Intel. (2023). ArUco Marker Detection with OpenCV. OpenCV Documentation.
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

e Python Software Foundation. (2023). Python Language Reference, version 3.10.
https://www.python.org/

e NumPy Developers. (2023). NumPy: Fundamental Package for Scientific Computing
with Python. https://numpy.org/

e Arduino. (2023). Arduino Uno Technical Reference. https://www.arduino.cc/

https://opencv.org/
https://pybullet.org/
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://www.python.org/
https://numpy.org/
https://www.arduino.cc/

