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Abstract. Tuberculosis (TB) is a leading infectious cause of death worldwide,
with early diagnosis critical for effective treatment. Chest X-rays are widely used
for TB detection, but their interpretation can be subjective. This study compares
the performance of three deep learning models—DenseNet121, MobileNetV2,
and InceptionVV3—for automated TB classification in X-ray images. A balanced
dataset of 1,400 images (700 TB-positive and 700 normal) was preprocessed to
224x224 pixels and split into training (75%), validation (15%), and test (10%)
sets. Transfer learning was employed, fine-tuning each architecture while preser-
ving pre-trained weights from ImageNet.

Results showed MobileNetV2 as the most balanced model, achieving 100%
sensitivity (correctly identifying all TB cases) with strong precision (0.93). Den-
seNet121 had high overall accuracy (0.95) but produced 10 false negatives, ris-
king missed diagnoses. InceptionV3 demonstrated robust performance but leaned
toward classifying images as normal, potentially increasing false negatives. Mo-
bileNetV2’s efficiency and reliability suggest it is well-suited for TB screening,
particularly in resource-limited settings. These findings highlight the potential of
CNNss to assist in TB diagnosis while underscoring the need for model-specific
clinical validation to minimize diagnostic errors.
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1 Introduction

Tuberculosis (TB) is a chronic infectious disease caused by the bacterium Mycobac-
terium tuberculosis, which mainly affects the lungs, although it can involve other or-
gans [1]. It is transmitted by the airborne route, through droplets expelled when cough-
ing, sneezing or talking, which facilitates its spread in densely populated communities
or communities with limited access to health services. The diagnosis of TB is based on
various tests, with chest radiography being a fundamental tool for detecting signs of
active pulmonary disease. However, its interpretation can be complex, since radiologi-
cal manifestations vary according to the stage of the disease and may overlap with other
pulmonary pathologies, which represent a challenge for physicians when establishing
an accurate diagnosis. Moreover, in some cases it can be a fatal disease, so early detec-
tion of the disease prevents the spread of the bacteria and timely treatment can be pro-
vided to the patient [2][3].



Tuberculosis remains one of the main threats to global public health, since the most
recent report of the World Health Organization (WHO, 2024), in 2023 approximately
8.2 million cases of TB were diagnosed globally, of which 1.25 million resulted in
deaths, thus, it remains the leading cause of death from infectious disease in the world
[4][5].

In recent years, the use of deep learning with convolutional neural networks (CNNSs)
has transformed the field of computer vision thanks to its ability to automatically extract
and model abstract features, surpassing the performance of other supervised and unsu-
pervised algorithms [6]. These feedforward networks process high-definition RGB
images through multiple layers of neurons whose weights and parameters can be adjus-
ted during training. Their architecture comprises feature extraction modules and classi-
fication layers, including convolution operations to identify spatial patterns, clustering
to reduce dimensions and batch normalisation to improve model stability. Thanks to
this hierarchical configuration, CNNs can represent visual information efficiently and
robustly, making them suitable for complex image analysis tasks such as those invol-
ving the Inception, MobileNet and DenseNet architectures [7].

The MobileNetV/2 architecture, described in the article 'MobileNetV2: Inverted Re-
siduals and Linear Bottlenecks”, introduces key innovations for efficient convolutional
networks, such as inverted residual blocks and linear bottlenecks. These innovations
allow the number of parameters and operations to be reduced without significantly com-
promising model performance, making them ideal for image processing tasks such as
classification on devices with limited resources. Each block comprises a feature expan-
sion with 1x1 convolutions, followed by a 3x3 depthwise convolution that filters each
channel separately, and a projection to a lower dimension without ReL U activation to
preserve critical information. Additionally, residual connections are employed where-
ver possible, facilitating learning in deep networks. This architecture strikes a balance
between accuracy and efficiency, adapting to different levels of complexity without
requiring high-performance hardware [8].

Conversely, the Inception-v3 architecture employs Inception modules, which exe-
cute multiple convolutional operations in parallel, including 1x1, 3x3, and 5x5 filters,
and concatenate them in the output channel. This enables the network to capture infor-
mation at various scales. It also introduces key optimisations, such as the factorisation
of large convolutions (e.g., a 5x5 convolution is replaced by two 3%3 convolutions) and
the use of asymmetric convolutions (such as 1x7 followed by 7x1), which reduces
computational cost without affecting representation capacity. Furthermore, it incorpo-
rates techniques such as label smoothing, batch normalisation, and auxiliary regulari-
sation to improve generalisation and accelerate training. This architecture has been ex-
tensively adopted due to its optimal balance between performance, accuracy, and
computational efficiency in the domain of computer vision [9].

The Densely Connected Convolutional Networks (DenseNet) architecture signifies
a substantial advancement in the domain of deep convolutional networks, with the in-
troduction of dense connections between layers. In contrast to the conventional ap-
proach of passing the output of a single layer to the subsequent layer, this network
employs a concatenation strategy. Specifically, it integrates the outputs of all preceding
layers as inputs to each subsequent layer within a designated dense block. This



approach fosters enhanced feature reuse and substantially enhances gradient propaga-
tion during the training process. Consequently, it enables the training of more complex
networks with reduced risk of performance degradation. The network is organised into
dense blocks, followed by transition layers. These layers apply a 1x1 convolution and
a pooling operation. These operations control the size of the feature map and prevent
exponential growth of the channels. The modular configuration of the network enables
the depth to be adapted to the task at hand, thereby achieving optimal results in image
classification, detection, and segmentation with noteworthy computational efficiency.
As DenseNet has been demonstrated to enhance accuracy, it is also advantageous in
terms of memory and training time [10].

This research contributes to the study of processing chest X-ray images, with a focus
on the automatic classification of healthy and sick patients for the detection of tubercu-
losis. This approach is an effective complementary tool for supporting clinical diagno-
sis. The study's primary objective is to compare the performance of DenseNet, Mobi-
leNet and InceptionV3 convolutional neural network architectures by evaluating me-
trics such as sensitivity, recall and F1 score when classifying X-ray images of patients
with and without tuberculosis.

2 Methods

2.1  Dataset "Tuberculosis (TB) Chest X-ray Database™

Initially, the dataset was procured from the Kaggle repository, which houses a com-
pendium of chest X-ray images that have been classified as positive for tuberculosis, in
addition to images corresponding to healthy patients. The dataset, designated "Tubercu-
losis (TB) Chest X-ray Database" encompasses a total of 4,200 images, of which 3,500
are from patients without tuberculosis (normal) and 700 images correspond to patients
with tuberculosis. In order to maintain class balance and avoid bias during model trai-
ning, 700 images were randomly selected for the "Normal" category. In this instance,
data augmentation techniques were not applied, thus ensuring the exclusive use of real
data.

2.2 Preprocessing the dataset

Given the heterogeneity of the image dimensions within the set, a standardisation
process was implemented to ensure consistency, resulting in a final resolution of 224 x
224 pixels. The selection of this resolution is supported by the findings of Hooda et al.
[11], which utilised this size for the DenseNet and Inception architectures. In the case
of MobileNet, the same resolution was utilized because, according to the official docu-
mentation [12], when the 'include_top' parameter is set to 'False’, the input images must
be standardized to 224 x 224 pixels.

The dataset was then divided into three distinct sets: a training set comprising 75%
of the total data, a validation set consisting of 15%, and a test set containing the residual
10%. This approach was adopted with the objective of attaining an equilibrium between



the model's learning process, the refinement of its parameters, and the subsequent eva-
luation of its final performance. The 75% allocated to training enables the neural net-
work to acquire a sufficient number of examples to discern relevant patterns in the ima-
ges. The 15% allocated for validation is instrumental in regulating the training process,
thereby facilitating the identification of overfitting and the requisite adjustment of hy-
perparameters. The residual 10% designated for testing ensures an objective evaluation
of the model's final performance. This ratio has been frequently used in research invol-
ving moderate data sets, and its application is well-documented in the literature as a
means of maintaining model integrity and avoiding bias in evaluation [13].

2.3 Dataset training

Three deep convolutional network architectures were utilised in this research study:
MobileNetV2, InceptionV3, and DenseNet are all based on the transfer learning tech-
nigue. This strategy enabled the reutilisation of models that had been trained with the
ImageNet dataset, with subsequent adaptation to the specific domain of medical ima-
ges. In each instance, the initial top classification layers were eliminated to construct a
new classification head that was adapted to the number of classes in the dataset. The
input images were previously normalised and preprocessed using the functions corres-
ponding to each architecture, thus ensuring compatibility with the pretrained weights.

During the process of fine-tuning, a consistent approach was adopted across the three
architectures, based on the freezing of the initial layers and the updating of the final
layers. The procedure under discussion is founded upon the principles of transfer lear-
ning, which indicate that the layers in closest proximity to the network input learn ge-
neral visual patterns such as edges and textures, while the deep layers acquire more
specific representations of the original training domain, as has been established in pre-
vious studies [14][15]. In the case of MobileNetV2, the majority of the architecture was
kept frozen, with training being permitted only at the level of the final layers. Conver-
sely, InceptionV3 underwent modifications by unfrozen all layers post-number 290,
while preserving the integrity of the remaining model components, in accordance with
the recommendations outlined in the Keras documentation for transfer learning [16].

The three networks under consideration were compiled using the Adam optimizer, a
widely recognised software component for its computational efficiency, dynamic lear-
ning rate adaptation, and robustness against sparse gradients. The validation of this op-
timiser has been previously undertaken in a range of studies, including that of Haal et
al., where it demonstrated efficacy in the fine-tuning of models for the automatic de-
tection of tuberculosis in chest X-rays. In all cases, a loss function designed for multi-
class classification was employed, and the models were trained for fifteen epochs, using
separate sets for training and validation. In order to address the potential for imbalances
in class composition, a system of class weights was implemented with the objective of
promoting more equitable learning conditions. During the training process, the accu-
racy and loss metrics for both the training and validation sets were monitored and



graphically represented to facilitate analysis of model convergence and early detection
of overfitting.

3 Results

The performance of the DenseNet121, MobileNet, and Inception architectures was
evaluated using chest X-ray images for the purpose of tuberculosis detection. The met-
rics of precision, sensitivity, F1 score, and accuracy are summarised in Table 1, along-
side the respective confusion matrices.

Table 1. A comparison of evaluation metrics between CNN architectures is presen-
ted herein. Values close to 1 indicate greater classification effectiveness. The arithmetic
mean is denoted by '‘Macro Avg', while the mean weighted by support is denoted by
"‘Weighted Avg'.
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Table 1. A comparison of evaluation metrics between CNN architectures is presented herein.
Values close to 1 indicate greater classification effectiveness. The arithmetic mean is denoted by
'Macro Avg', while the mean weighted by support is denoted by 'Weighted Avg'.

Métrica Clase MobileNet Inception DenseNet
Precision NORMAL 1 1 0.89
TUBERCULOSIS 1 0.94 1
Recall NORMAL 1 0.93 1
TUBERCULOSIS 1 1 09
Fl-Score NORMAL 1 0.96 0.94
TUBERCULOSIS 1 0.97 0.95
Soporte NORMAL 92 82 81
TUBERCULOSIS 92 102 103
Exactitud _
(Accaracy) 1 0.97 0.95
Macro Avg - 1 0.97 0.95
Weighted Avg - 1 0.97 0.95

Although DenseNet121 showed high overall accuracy, the confusion matrix reveals
a concerning tendency to misclassify some tuberculosis cases as normal. While the mo-
del correctly identified all normal cases, it recorded ten false negatives in the patholo-
gical class, which could affect its clinical applicability despite its favourable overall
metrics. By contrast, MobileNet offered a better balance between sensitivity and accu-
racy, correctly identifying all tuberculosis cases and slightly decreasing the detection
of normal images. This behaviour suggests a controlled bias towards the pathological
class, which is desirable in medical diagnostic tasks.



Finally, the Inception-based model performed well overall, although its sensitivity
in detecting tuberculosis was lower. The confusion matrix shows a tendency to classify
images as normal, which could increase the risk of false negatives. Overall, MobileNet
is the most balanced option for tuberculosis detection in medical images, while Dense-
Net and Inception have specific limitations that must be considered depending on the
clinical context of application.
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