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Abstract. Tuberculosis (TB) is a leading infectious cause of death worldwide, 

with early diagnosis critical for effective treatment. Chest X-rays are widely used 

for TB detection, but their interpretation can be subjective. This study compares 

the performance of three deep learning models—DenseNet121, MobileNetV2, 

and InceptionV3—for automated TB classification in X-ray images. A balanced 

dataset of 1,400 images (700 TB-positive and 700 normal) was preprocessed to 

224×224 pixels and split into training (75%), validation (15%), and test (10%) 

sets. Transfer learning was employed, fine-tuning each architecture while preser-

ving pre-trained weights from ImageNet. 

Results showed MobileNetV2 as the most balanced model, achieving 100% 

sensitivity (correctly identifying all TB cases) with strong precision (0.93). Den-

seNet121 had high overall accuracy (0.95) but produced 10 false negatives, ris-

king missed diagnoses. InceptionV3 demonstrated robust performance but leaned 

toward classifying images as normal, potentially increasing false negatives. Mo-

bileNetV2’s efficiency and reliability suggest it is well-suited for TB screening, 

particularly in resource-limited settings. These findings highlight the potential of 

CNNs to assist in TB diagnosis while underscoring the need for model-specific 

clinical validation to minimize diagnostic errors. 
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1 Introduction 

Tuberculosis (TB) is a chronic infectious disease caused by the bacterium Mycobac-

terium tuberculosis, which mainly affects the lungs, although it can involve other or-

gans [1]. It is transmitted by the airborne route, through droplets expelled when cough-

ing, sneezing or talking, which facilitates its spread in densely populated communities 

or communities with limited access to health services. The diagnosis of TB is based on 

various tests, with chest radiography being a fundamental tool for detecting signs of 

active pulmonary disease. However, its interpretation can be complex, since radiologi-

cal manifestations vary according to the stage of the disease and may overlap with other 

pulmonary pathologies, which represent a challenge for physicians when establishing 

an accurate diagnosis. Moreover, in some cases it can be a fatal disease, so early detec-

tion of the disease prevents the spread of the bacteria and timely treatment can be pro-

vided to the patient [2][3]. 
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Tuberculosis remains one of the main threats to global public health, since the most 

recent report of the World Health Organization (WHO, 2024), in 2023 approximately 

8.2 million cases of TB were diagnosed globally, of which 1.25 million resulted in 

deaths, thus, it remains the leading cause of death from infectious disease in the world 

[4][5]. 

In recent years, the use of deep learning with convolutional neural networks (CNNs) 

has transformed the field of computer vision thanks to its ability to automatically extract 

and model abstract features, surpassing the performance of other supervised and unsu-

pervised algorithms [6]. These feedforward networks process high-definition RGB 

images through multiple layers of neurons whose weights and parameters can be adjus-

ted during training. Their architecture comprises feature extraction modules and classi-

fication layers, including convolution operations to identify spatial patterns, clustering 

to reduce dimensions and batch normalisation to improve model stability. Thanks to 

this hierarchical configuration, CNNs can represent visual information efficiently and 

robustly, making them suitable for complex image analysis tasks such as those invol-

ving the Inception, MobileNet and DenseNet architectures [7]. 

The MobileNetV2 architecture, described in the article 'MobileNetV2: Inverted Re-

siduals and Linear Bottlenecks”, introduces key innovations for efficient convolutional 

networks, such as inverted residual blocks and linear bottlenecks. These innovations 

allow the number of parameters and operations to be reduced without significantly com-

promising model performance, making them ideal for image processing tasks such as 

classification on devices with limited resources. Each block comprises a feature expan-

sion with 1×1 convolutions, followed by a 3×3 depthwise convolution that filters each 

channel separately, and a projection to a lower dimension without ReLU activation to 

preserve critical information. Additionally, residual connections are employed where-

ver possible, facilitating learning in deep networks. This architecture strikes a balance 

between accuracy and efficiency, adapting to different levels of complexity without 

requiring high-performance hardware [8]. 

Conversely, the Inception-v3 architecture employs Inception modules, which exe-

cute multiple convolutional operations in parallel, including 1×1, 3×3, and 5×5 filters, 

and concatenate them in the output channel. This enables the network to capture infor-

mation at various scales. It also introduces key optimisations, such as the factorisation 

of large convolutions (e.g., a 5×5 convolution is replaced by two 3×3 convolutions) and 

the use of asymmetric convolutions (such as 1×7 followed by 7×1), which reduces 

computational cost without affecting representation capacity. Furthermore, it incorpo-

rates techniques such as label smoothing, batch normalisation, and auxiliary regulari-

sation to improve generalisation and accelerate training. This architecture has been ex-

tensively adopted due to its optimal balance between performance, accuracy, and 

computational efficiency in the domain of computer vision [9]. 

The Densely Connected Convolutional Networks (DenseNet) architecture signifies 

a substantial advancement in the domain of deep convolutional networks, with the in-

troduction of dense connections between layers. In contrast to the conventional ap-

proach of passing the output of a single layer to the subsequent layer, this network 

employs a concatenation strategy. Specifically, it integrates the outputs of all preceding 

layers as inputs to each subsequent layer within a designated dense block. This 



3 

approach fosters enhanced feature reuse and substantially enhances gradient propaga-

tion during the training process. Consequently, it enables the training of more complex 

networks with reduced risk of performance degradation. The network is organised into 

dense blocks, followed by transition layers. These layers apply a 1×1 convolution and 

a pooling operation. These operations control the size of the feature map and prevent 

exponential growth of the channels. The modular configuration of the network enables 

the depth to be adapted to the task at hand, thereby achieving optimal results in image 

classification, detection, and segmentation with noteworthy computational efficiency. 

As DenseNet has been demonstrated to enhance accuracy, it is also advantageous in 

terms of memory and training time [10]. 

This research contributes to the study of processing chest X-ray images, with a focus 

on the automatic classification of healthy and sick patients for the detection of tubercu-

losis. This approach is an effective complementary tool for supporting clinical diagno-

sis. The study's primary objective is to compare the performance of DenseNet, Mobi-

leNet and InceptionV3 convolutional neural network architectures by evaluating me-

trics such as sensitivity, recall and F1 score when classifying X-ray images of patients 

with and without tuberculosis. 

2 Methods  

2.1 Dataset "Tuberculosis (TB) Chest X-ray Database" 

Initially, the dataset was procured from the Kaggle repository, which houses a com-

pendium of chest X-ray images that have been classified as positive for tuberculosis, in 

addition to images corresponding to healthy patients. The dataset, designated "Tubercu-

losis (TB) Chest X-ray Database" encompasses a total of 4,200 images, of which 3,500 

are from patients without tuberculosis (normal) and 700 images correspond to patients 

with tuberculosis. In order to maintain class balance and avoid bias during model trai-

ning, 700 images were randomly selected for the "Normal" category. In this instance, 

data augmentation techniques were not applied, thus ensuring the exclusive use of real 

data. 

2.2 Preprocessing the dataset 

Given the heterogeneity of the image dimensions within the set, a standardisation 

process was implemented to ensure consistency, resulting in a final resolution of 224 × 

224 pixels. The selection of this resolution is supported by the findings of Hooda et al. 

[11], which utilised this size for the DenseNet and Inception architectures. In the case 

of MobileNet, the same resolution was utilized because, according to the official docu-

mentation [12], when the 'include_top' parameter is set to 'False', the input images must 

be standardized to 224 × 224 pixels. 

The dataset was then divided into three distinct sets: a training set comprising 75% 

of the total data, a validation set consisting of 15%, and a test set containing the residual 

10%. This approach was adopted with the objective of attaining an equilibrium between 
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the model's learning process, the refinement of its parameters, and the subsequent eva-

luation of its final performance. The 75% allocated to training enables the neural net-

work to acquire a sufficient number of examples to discern relevant patterns in the ima-

ges. The 15% allocated for validation is instrumental in regulating the training process, 

thereby facilitating the identification of overfitting and the requisite adjustment of hy-

perparameters. The residual 10% designated for testing ensures an objective evaluation 

of the model's final performance. This ratio has been frequently used in research invol-

ving moderate data sets, and its application is well-documented in the literature as a 

means of maintaining model integrity and avoiding bias in evaluation [13]. 

2.3 Dataset training 

Three deep convolutional network architectures were utilised in this research study: 

MobileNetV2, InceptionV3, and DenseNet are all based on the transfer learning tech-

nique. This strategy enabled the reutilisation of models that had been trained with the 

ImageNet dataset, with subsequent adaptation to the specific domain of medical ima-

ges. In each instance, the initial top classification layers were eliminated to construct a 

new classification head that was adapted to the number of classes in the dataset. The 

input images were previously normalised and preprocessed using the functions corres-

ponding to each architecture, thus ensuring compatibility with the pretrained weights. 

 

During the process of fine-tuning, a consistent approach was adopted across the three 

architectures, based on the freezing of the initial layers and the updating of the final 

layers. The procedure under discussion is founded upon the principles of transfer lear-

ning, which indicate that the layers in closest proximity to the network input learn ge-

neral visual patterns such as edges and textures, while the deep layers acquire more 

specific representations of the original training domain, as has been established in pre-

vious studies [14][15]. In the case of MobileNetV2, the majority of the architecture was 

kept frozen, with training being permitted only at the level of the final layers. Conver-

sely, InceptionV3 underwent modifications by unfrozen all layers post-number 290, 

while preserving the integrity of the remaining model components, in accordance with 

the recommendations outlined in the Keras documentation for transfer learning [16].  

 

The three networks under consideration were compiled using the Adam optimizer, a 

widely recognised software component for its computational efficiency, dynamic lear-

ning rate adaptation, and robustness against sparse gradients. The validation of this op-

timiser has been previously undertaken in a range of studies, including that of Haal et 

al., where it demonstrated efficacy in the fine-tuning of models for the automatic de-

tection of tuberculosis in chest X-rays. In all cases, a loss function designed for multi-

class classification was employed, and the models were trained for fifteen epochs, using 

separate sets for training and validation. In order to address the potential for imbalances 

in class composition, a system of class weights was implemented with the objective of 

promoting more equitable learning conditions. During the training process, the accu-

racy and loss metrics for both the training and validation sets were monitored and 
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graphically represented to facilitate analysis of model convergence and early detection 

of overfitting. 

3 Results  

The performance of the DenseNet121, MobileNet, and Inception architectures was 

evaluated using chest X-ray images for the purpose of tuberculosis detection. The met-

rics of precision, sensitivity, F1 score, and accuracy are summarised in Table 1, along-

side the respective confusion matrices. 

Table 1. A comparison of evaluation metrics between CNN architectures is presen-

ted herein. Values close to 1 indicate greater classification effectiveness. The arithmetic 

mean is denoted by 'Macro Avg', while the mean weighted by support is denoted by 

'Weighted Avg'. 

Table 1. A comparison of evaluation metrics between CNN architectures is presen-

ted herein. Values close to 1 indicate greater classification effectiveness. The arithmetic 

mean is denoted by 'Macro Avg', while the mean weighted by support is denoted by 

'Weighted Avg'. 

 

Table 1. A comparison of evaluation metrics between CNN architectures is presented herein. 

Values close to 1 indicate greater classification effectiveness. The arithmetic mean is denoted by 

'Macro Avg', while the mean weighted by support is denoted by 'Weighted Avg'. 

 

Although DenseNet121 showed high overall accuracy, the confusion matrix reveals 

a concerning tendency to misclassify some tuberculosis cases as normal. While the mo-

del correctly identified all normal cases, it recorded ten false negatives in the patholo-

gical class, which could affect its clinical applicability despite its favourable overall 

metrics. By contrast, MobileNet offered a better balance between sensitivity and accu-

racy, correctly identifying all tuberculosis cases and slightly decreasing the detection 

of normal images. This behaviour suggests a controlled bias towards the pathological 

class, which is desirable in medical diagnostic tasks. 
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Finally, the Inception-based model performed well overall, although its sensitivity 

in detecting tuberculosis was lower. The confusion matrix shows a tendency to classify 

images as normal, which could increase the risk of false negatives. Overall, MobileNet 

is the most balanced option for tuberculosis detection in medical images, while Dense-

Net and Inception have specific limitations that must be considered depending on the 

clinical context of application. 
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