Introduccion y marco tedrico:

Esta practica tiene como objetivo principal el reconocimiento de un objeto y su
posicidon con ayuda de marcadores artificiales (arucos).

Los marcadores ArUco son marcadores visuales que se utilizan para la
deteccion y el seguimiento en aplicaciones de realidad aumentada y vision por
computadora. El nombre de este marcador proviene de "Realidad Aumentada
Universidad de Coérdoba", ya que fue desarrollado en 2014 por la Universidad de
Cordoba, Espafia.

Desarrollo:

La herramienta a utilizar para el desarrollo de ésta tarea fue Python en la
version 3.8 (para evitar incompatibilidades). Para realizar la actividad fue necesario el
crear dos tipos de codigos distintos, uno para la creacion del durico y otro para el
reconocimiento del mismo.

A continuacién se mostraran los resultados del reconocimiento del aruco.

R D o

Y Dnetorive Docume

e gy X uosgy %

. 0,1
= np,arvayllic

Ingenieria Mecatronica
7to semestre
Vision por computadora

(image ointst)
le nisls

¢ R
_igin

origr o,

a iaing

Codigo paso a paso:

Codigo 1

Se importan las librerias cv2, future (para compatibilidad con python 2 y 3), numpy
como np. Posteriormente se configura el marcador de aruco y su ID, se utiliza
AURUCO_DIC, como diccionario, el mapea los nombres de diccionarios ArUco a
constantes de OpenCV, contienen distintos tamafios y tipos de patrones, se verifica si
el diccionario est4 disponible y lo carga, si no es compatible el programa se cierra, se
crea una imagen de aruco y se muestra en la pantalla

from _ future__ import print_function # Python 2/3
compatibility

import cv2 # Import the OpenCV library

import numpy as np # Import Numpy library
desired _aruco dictionary = "DICT_ARUCO ORIGINAL"
aruco_marker_id =1

Ingenieria Mecatronica
7to semestre
Vision por computadora
output_filename = "DICT_ARUCO_ORIGINAL_idl.png"
The different ArUco dictionaries built into the OpencCV
library.

ARUCO_DICT = {
"DICT_4X4 50": cv2.aruco.DICT_4X4 50,
"DICT_4X4_100": cv2.aruco.DICT_4X4_100,
"DICT_4X4_250": cv2.aruco.DICT_4X4_250,
"DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
"DICT_5X5_50": cv2.aruco.DICT_5X5_50,
"DICT_5X5_100": cv2.aruco.DICT_5X5_100,
"DICT 5X5 250": cv2.aruco.DICT_5X5 250,
"DICT_5X5_1000": cv2.aruco.DICT_5X5_ 1000,
"DICT_6X6_50": cv2.aruco.DICT_6X6_50,
"DICT_6X6_100": cv2.aruco.DICT_6X6_100,
"DICT_6X6_250": cv2.aruco.DICT_6X6_250,
"DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
"DICT_7X7_50": cv2.aruco.DICT_7X7_50,
"DICT_7X7_100": cv2.aruco.DICT_7X7_100,
"DICT_7X7_250": cv2.aruco.DICT_7X7_250,
"DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
"DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL
}

def main():

Main method of the program.

Check that we have a valid ArUco marker

if ARUCO_DICT.get(desired_aruco_dictionary, None) is None:
print("[INFO] ArUCo tag of '{}' is not supported".format(
args["type"]))

sys.exit(9)

Load the ArUco dictionary

this_aruco_dictionary =

cv2.aruco.Dictionary_get (ARUCO_DICT[desired_aruco_dictionary]

)

Ingenieria Mecatronica
7to semestre
Vision por computadora

Allocate memory for the ArUco marker

We create a 300x300x1 grayscale image, but you can use any
dimensions you desire.

print("[INFO] generating ArUCo tag type '{}' with ID
"{}'".format(

desired aruco_dictionary, aruco_marker_id))

Create the ArUco marker

this_marker = np.zeros((300, 300, 1), dtype="uint8")
cv2.aruco.drawMarker(this_aruco_dictionary, aruco_marker_id,
300, this marker, 1)

Save the ArUco tag to the current directory
cv2.imwrite(output_filename, this marker)
cv2.imshow("ArUco Marker", this_marker)
cv2.waitKey(0)

if __name__ == '_main__"':
print(__doc_)

main()

Cddigo 2:

Se importan las librerias

import cv2

import cv2.aruco as aruco

import numpy as np

from scipy.spatial.transform import Rotation as R

import math

import sys

Se define el tipo de diccionario auruco, en este caso DICT ARUCO_ORIGINAL, la
longitud de lado de los marcadores se utiliza para calcular su posicion en 3D.

aruco_dictionary name = "DICT_ARUCO ORIGINAL"

ARUCO_DICT = {
"DICT_4X4_50": aruco.DICT_4X4_50,

Ingenieria Mecatrénica
7to semestre
Vision por computadora

"DICT_4X4_100": aruco.DICT 4X4 100,
"DICT_4X4_250": aruco.DICT 4X4 250,
"DICT_4X4_1000": aruco.DICT 4X4 1000,
"DICT_5X5_50": aruco.DICT 5X5 50,
"DICT_5X5_100": aruco.DICT 5X5_100,

"DICT_5X5_250": aruco.DICT_5X5_250,
"DICT_5X5_1000": aruco.DICT_5X5_1000,
"DICT_6X6_50": aruco.DICT_6X6_50,
"DICT_6X6_100": aruco.DICT_6X6_100,
"DICT_6X6_250": aruco.DICT_6X6_250,
"DICT_6X6_1000": aruco.DICT_6X6_1000,
"DICT_7X7_50": aruco.DICT_7X7_50,
"DICT_7X7_100": aruco.DICT_7X7_100,
"DICT_7X7_250": aruco.DICT_7X7_250,
"DICT_7X7_1000": aruco.DICT_7X7_1000,
"DICT_ARUCO_ORIGINAL": aruco.DICT_ARUCO_ORIGINAL

}

Se convierte la orientacion de un marcador (cuartenion a angulos de Euler)

def euler_from_quaternion(x, y, z, w):

nmn

Convierte una cuaternion en angulos de Euler (roll, pitch, yaw).

nnn

Calculos de transformacion de cuaterniones a angulos de Euler

return roll_x, pitch_y, yaw_z # en radianes

Se valida que el diccionario esté disponible, se lee los parametros de la cdmara,se
captura

el video y se detectan los marcadores, se dibujan los ejes y se calcula la orientacion, se
muestra el video y se liberan recursos.

aruco_marker_side_length = 0.0785
camera_calibration_parameters filename =
'calibration_chessboard.yaml'

def euler_from_quaternion(x, y, z, w):

Ingenieria Mecatronica
7to semestre
Vision por computadora

Convierte un cuaternioén en angulos de Euler (roll, pitch, yaw).

nmn

t0 = +2.0 * (w * X +y * z)
tl = +1.0 - 2.0 * (x * x +y *y)
roll x = math.atan2(to, t1)

t2 = +2.0 * (w *y - z * x)

t2 = +41.0 if t2 > +1.0 else t2

t2 = -1.0 if t2 < -1.0 else t2

pitch_y = math.asin(t2)

t3 = +2.0 * (w * z + x * y)

t4 = +41.0 - 2.0 * (y *y + z * z)

yaw_z = math.atan2(t3, t4)

return roll x, pitch_y, yaw z # en radianes
def main():

if ARUCO_DICT.get(aruco_dictionary_name, None) is None:
print("[INFO] ArUCo tag of '{}' is not
supported".format(aruco _dictionary name))

sys.exit(9)

Leer parametros de la camara

cv_file =
cv2.FileStorage(camera_calibration_parameters_filename,
cv2.FILE_STORAGE_READ)

mtx = cv_file.getNode('K").mat()

dst = cv_file.getNode('D"').mat()

cv_file.release()

Cargar diccionario de ArUco

print("[INFO] detecting '{}'
markers...".format(aruco_dictionary_name))
this_aruco_dictionary =
aruco.getPredefinedDictionary(ARUCO_DICT[aruco_dictionary_nam

e])

this_aruco_parameters = aruco.DetectorParameters create()

Iniciar video

Ingenieria Mecatronica
7to semestre
Vision por computadora
cap = cv2.VideoCapture(@, cv2.CAP_DSHOW)
while True:
ret, frame = cap.read()
(corners, marker_ids, rejected) = aruco.detectMarkers(
frame, this aruco_dictionary,
parameters=this_aruco_parameters

)

if marker_ids is not None:
aruco.drawDetectedMarkers(frame, corners, marker_ids)
rvecs, tvecs, _ = aruco.estimatePoseSingleMarkers(corners,
aruco_marker_side_length, mtx, dst)

for i, marker_id in enumerate(marker_ids):

Obtener los vectores de rotacidn y traslacidn

rvec = rvecs[i][9]

tvec = tvecs[i][9]

Dibujar el eje en el marcador detectado
aruco.drawAxis(frame, mtx, dst, rvec, tvec, 0.05)

Obtener la orientacidn en angulos de Euler
rotation_matrix = cv2.Rodrigues(rvec)[0]

r = R.from_matrix(rotation_matrix)

quat = r.as_quat()
roll x, pitch_y, yaw z
quat[1l], quat[2],
quat[3])

roll x, pitch_y, yaw_z = map(math.degrees, [roll x, pitch_y,
yaw_z])

Mostrar en consola la posicidn y orientacidn
print(f"Marker ID: {marker_id[@]}")

euler_from_quaternion(quat[@],

print(f"Position: x={tvec[0]:.4f}, y={tvec[1l]:.4f},
z={tvec[2]:.4F}")

print(f"Orientation: roll={roll_x:.2f}, pitch={pitch_y:.2f},
yaw={yaw_z:.2f}\n")

Mostrar el resultado en la ventana de video

Ingenieria Mecatrénica
7to semestre
Vision por computadora

cv2.imshow('frame', frame)
Salir al presionar "q"
if cv2.waitKey(1) & OxFF == ord('q'):
break
Cerrar la ventana y liberar la camara
cap.release()
cv2.destroyAllWindows ()
if name_ == "'_main__
main()

Conclusiones:

Este codigo busco el detectar las orientaciones de un objeto con un marco de
referencia a manera de codigo, la parte méas complicada del mismo fue el encontrar el
diccionario y libreria adecuada para la deteccion del aruco generado, lo cual requirid
de investigacion y comprension de la funcionalidad del codigo en general, ademas el
ponerle una marca que remarque en el plano X, Y y Z igual requiri6 de cierto grado de
complejidad.

