
Introducción y marco teórico:

Ésta práctica tiene como objetivo principal el reconocimiento de un objeto y su
posición con ayuda de marcadores artificiales (arucos).

Los marcadores ArUco son marcadores visuales que se utilizan para la
detección y el seguimiento en aplicaciones de realidad aumentada y visión por
computadora. El nombre de este marcador proviene de "Realidad Aumentada
Universidad de Córdoba", ya que fue desarrollado en 2014 por la Universidad de
Córdoba, España.

Desarrollo:

La herramienta a utilizar para el desarrollo de ésta tarea fue Python en la
versión 3.8 (para evitar incompatibilidades). Para realizar la actividad fue necesario el
crear dos tipos de códigos distintos, uno para la creación del áurico y otro para el
reconocimiento del mismo.

A continuación se mostrarán los resultados del reconocimiento del aruco.



Ingeniería Mecatrónica
7to semestre

Visión por computadora

Código paso a paso:

Código 1
Se importan las librerias cv2, future (para compatibilidad con python 2 y 3), numpy
como np. Posteriormente se configura el marcador de aruco y su ID, se utiliza
AURUCO_DIC, como diccionario, el mapea los nombres de diccionarios ArUco a
constantes de OpenCV, contienen distintos tamaños y tipos de patrones, se verifica si
el diccionario está disponible y lo carga, si no es compatible el programa se cierra, se
crea una imagen de aruco y se muestra en la pantalla

from __future__ import print_function # Python 2/3

compatibility

import cv2 # Import the OpenCV library

import numpy as np # Import Numpy library

desired_aruco_dictionary = "DICT_ARUCO_ORIGINAL"

aruco_marker_id = 1



Ingeniería Mecatrónica
7to semestre

Visión por computadora

output_filename = "DICT_ARUCO_ORIGINAL_id1.png"

# The different ArUco dictionaries built into the OpenCV

library.

ARUCO_DICT = {

"DICT_4X4_50": cv2.aruco.DICT_4X4_50,

"DICT_4X4_100": cv2.aruco.DICT_4X4_100,

"DICT_4X4_250": cv2.aruco.DICT_4X4_250,

"DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,

"DICT_5X5_50": cv2.aruco.DICT_5X5_50,

"DICT_5X5_100": cv2.aruco.DICT_5X5_100,

"DICT_5X5_250": cv2.aruco.DICT_5X5_250,

"DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,

"DICT_6X6_50": cv2.aruco.DICT_6X6_50,

"DICT_6X6_100": cv2.aruco.DICT_6X6_100,

"DICT_6X6_250": cv2.aruco.DICT_6X6_250,

"DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,

"DICT_7X7_50": cv2.aruco.DICT_7X7_50,

"DICT_7X7_100": cv2.aruco.DICT_7X7_100,

"DICT_7X7_250": cv2.aruco.DICT_7X7_250,

"DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,

"DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL

}

def main():

"""

Main method of the program.

"""

# Check that we have a valid ArUco marker

if ARUCO_DICT.get(desired_aruco_dictionary, None) is None:

print("[INFO] ArUCo tag of '{}' is not supported".format(

args["type"]))

sys.exit(0)

# Load the ArUco dictionary

this_aruco_dictionary =

cv2.aruco.Dictionary_get(ARUCO_DICT[desired_aruco_dictionary]

)



Ingeniería Mecatrónica
7to semestre

Visión por computadora

# Allocate memory for the ArUco marker

# We create a 300x300x1 grayscale image, but you can use any

dimensions you desire.

print("[INFO] generating ArUCo tag type '{}' with ID

'{}'".format(

desired_aruco_dictionary, aruco_marker_id))

# Create the ArUco marker

this_marker = np.zeros((300, 300, 1), dtype="uint8")

cv2.aruco.drawMarker(this_aruco_dictionary, aruco_marker_id,

300, this_marker, 1)

# Save the ArUco tag to the current directory

cv2.imwrite(output_filename, this_marker)

cv2.imshow("ArUco Marker", this_marker)

cv2.waitKey(0)

if __name__ == '__main__':

print(__doc__)

main()

Código 2:

Se importan las librerías
import cv2
import cv2.aruco as aruco
import numpy as np
from scipy.spatial.transform import Rotation as R
import math
import sys
Se define el tipo de diccionario auruco, en este caso DICT_ARUCO_ORIGINAL, la
longitud de lado de los marcadores se utiliza para calcular su posición en 3D.

aruco_dictionary_name = "DICT_ARUCO_ORIGINAL"

ARUCO_DICT = {

"DICT_4X4_50": aruco.DICT_4X4_50,



Ingeniería Mecatrónica
7to semestre

Visión por computadora

"DICT_4X4_100": aruco.DICT_4X4_100,

"DICT_4X4_250": aruco.DICT_4X4_250,

"DICT_4X4_1000": aruco.DICT_4X4_1000,

"DICT_5X5_50": aruco.DICT_5X5_50,

"DICT_5X5_100": aruco.DICT_5X5_100,

"DICT_5X5_250": aruco.DICT_5X5_250,

"DICT_5X5_1000": aruco.DICT_5X5_1000,

"DICT_6X6_50": aruco.DICT_6X6_50,

"DICT_6X6_100": aruco.DICT_6X6_100,

"DICT_6X6_250": aruco.DICT_6X6_250,

"DICT_6X6_1000": aruco.DICT_6X6_1000,

"DICT_7X7_50": aruco.DICT_7X7_50,

"DICT_7X7_100": aruco.DICT_7X7_100,

"DICT_7X7_250": aruco.DICT_7X7_250,

"DICT_7X7_1000": aruco.DICT_7X7_1000,

"DICT_ARUCO_ORIGINAL": aruco.DICT_ARUCO_ORIGINAL

}

Se convierte la orientación de un marcador (cuartenion a angulos de Euler)

def euler_from_quaternion(x, y, z, w):

"""
Convierte una cuaternión en ángulos de Euler (roll, pitch, yaw).
"""
# Cálculos de transformación de cuaterniones a ángulos de Euler
...

return roll_x, pitch_y, yaw_z # en radianes

Se valida que el diccionario esté disponible, se lee los parámetros de la cámara,se
captura
el video y se detectan los marcadores, se dibujan los ejes y se calcula la orientación, se
muestra el video y se liberan recursos.

aruco_marker_side_length = 0.0785

camera_calibration_parameters_filename =

'calibration_chessboard.yaml'

def euler_from_quaternion(x, y, z, w):

"""



Ingeniería Mecatrónica
7to semestre

Visión por computadora
Convierte un cuaternión en ángulos de Euler (roll, pitch, yaw).
"""

t0 = +2.0 * (w * x + y * z)

t1 = +1.0 - 2.0 * (x * x + y * y)

roll_x = math.atan2(t0, t1)

t2 = +2.0 * (w * y - z * x)

t2 = +1.0 if t2 > +1.0 else t2

t2 = -1.0 if t2 < -1.0 else t2

pitch_y = math.asin(t2)

t3 = +2.0 * (w * z + x * y)

t4 = +1.0 - 2.0 * (y * y + z * z)

yaw_z = math.atan2(t3, t4)

return roll_x, pitch_y, yaw_z # en radianes

def main():

if ARUCO_DICT.get(aruco_dictionary_name, None) is None:

print("[INFO] ArUCo tag of '{}' is not

supported".format(aruco_dictionary_name))

sys.exit(0)

# Leer parámetros de la cámara

cv_file =

cv2.FileStorage(camera_calibration_parameters_filename,

cv2.FILE_STORAGE_READ)

mtx = cv_file.getNode('K').mat()

dst = cv_file.getNode('D').mat()

cv_file.release()

# Cargar diccionario de ArUco

print("[INFO] detecting '{}'

markers...".format(aruco_dictionary_name))

this_aruco_dictionary =

aruco.getPredefinedDictionary(ARUCO_DICT[aruco_dictionary_nam

e])

this_aruco_parameters = aruco.DetectorParameters_create()

# Iniciar video



Ingeniería Mecatrónica
7to semestre

Visión por computadora

cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)

while True:

ret, frame = cap.read()

(corners, marker_ids, rejected) = aruco.detectMarkers(

frame, this_aruco_dictionary,

parameters=this_aruco_parameters

)

if marker_ids is not None:

aruco.drawDetectedMarkers(frame, corners, marker_ids)

rvecs, tvecs, _ = aruco.estimatePoseSingleMarkers(corners,

aruco_marker_side_length, mtx, dst)

for i, marker_id in enumerate(marker_ids):

# Obtener los vectores de rotación y traslación

rvec = rvecs[i][0]

tvec = tvecs[i][0]

# Dibujar el eje en el marcador detectado

aruco.drawAxis(frame, mtx, dst, rvec, tvec, 0.05)

# Obtener la orientación en ángulos de Euler

rotation_matrix = cv2.Rodrigues(rvec)[0]

r = R.from_matrix(rotation_matrix)

quat = r.as_quat()

roll_x, pitch_y, yaw_z = euler_from_quaternion(quat[0],

quat[1], quat[2],

quat[3])

roll_x, pitch_y, yaw_z = map(math.degrees, [roll_x, pitch_y,

yaw_z])

# Mostrar en consola la posición y orientación

print(f"Marker ID: {marker_id[0]}")

print(f"Position: x={tvec[0]:.4f}, y={tvec[1]:.4f},

z={tvec[2]:.4f}")

print(f"Orientation: roll={roll_x:.2f}, pitch={pitch_y:.2f},

yaw={yaw_z:.2f}\n")

# Mostrar el resultado en la ventana de video



Ingeniería Mecatrónica
7to semestre

Visión por computadora

cv2.imshow('frame', frame)

# Salir al presionar "q"

if cv2.waitKey(1) & 0xFF == ord('q'):

break

# Cerrar la ventana y liberar la cámara

cap.release()

cv2.destroyAllWindows()

if __name__ == '__main__':

main()

Conclusiones:

Éste código busco el detectar las orientaciones de un objeto con un marco de
referencia a manera de código, la parte más complicada del mismo fue el encontrar el
diccionario y librería adecuada para la detección del aruco generado, lo cual requirió
de investigación y comprensión de la funcionalidad del código en general, además el
ponerle una marca que remarque en el plano X, Y y Z igual requirió de cierto grado de
complejidad.


