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Abstract. The COVID-19 pandemic highlighted the need for rapid diagnostic tools. This
study develops and evaluates automated classification models for Chest X-ray (CXR)
images to distinguish between COVID-19, Pneumonia, and Normal cases. We utilized
InceptionV3 and ResNet152V2 deep learning architectures with transfer learning,
alongside a classical Support Vector Machine (SVM) approach based on intensity
histograms. Using a large public CXR dataset, our findings robustly affirm these methods'
capability to accurately differentiate pulmonary states. This work presents promising
avenues for augmenting clinical decision support in differential diagnosis and patient
management, aiming to ease radiologists burden and streamline patient triage.
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1 Introduction

The unprecedented emergence of the COVID-19 pandemic precipitated a critical demand for expeditious and
reliable diagnostic capabilities on a global scale. While reverse transcription-polymerase chain reaction
(RT-PCR) assays remain the benchmark for direct SARS-CoV-2 detection, limitations pertaining to their
accessibility, processing latency, and inherent variability in sensitivity have catalyzed the exploration of
complementary diagnostic modalities [1]. Medical imaging, particularly Computed Tomography (CT) of the
chest and, crucially, Chest X-rays (CXR), has assumed a pivotal role in the assessment of disease extent and the
longitudinal monitoring of patient cohorts [2].

CXR examinations are particularly esteemed for their economic viability, widespread availability across diverse
clinical environments, and the celerity with which image acquisition can be accomplished. Notwithstanding
these advantages, the interpretation of CXR images to differentiate between pulmonary patterns indicative of
COVID-19, other forms of pneumonia (both bacterial and non-COVID viral), and physiologically normal lungs
can be inherently intricate and prone to subjective variability, necessitating the discernment of highly skilled
radiologists [3]. Clinical manifestations of COVID-19 on CXR often include bilateral peripheral ground-glass
opacities and multifocal consolidations, patterns that can significantly overlap with those observed in other viral
or bacterial pneumonias [7]. Bacterial pneumonias, for instance, typically present with well-demarcated lobar
consolidations, whereas other viral pneumonias might display diffuse interstitial patterns, underscoring the
diagnostic challenges. In contexts characterized by elevated clinical demand, an augmented workload and
resultant clinician fatigue may inadvertently compromise diagnostic precision and timeliness. Within this
overarching framework, Artificial Intelligence (Al), and specifically the domain of Deep Learning, has evinced
extraordinary proficiency in the analytical scrutiny of medical imagery [6]. Convolutional Neural Networks
(CNNs), by virtue of their intrinsic capacity to extract hierarchical features directly from raw data, have
facilitated momentous advancements in image classification and segmentation tasks [4]. Computer-aided
diagnosis (CAD) systems predicated upon CNN architectures hold substantial promise as objective
second-opinion mechanisms, efficient triage instruments, or proactive early warning systems, thereby enhancing
procedural efficiency and potentially refining diagnostic accuracy [5]. The widespread application of CNNs for



COVID-19 detection in medical images has been extensively explored, often leveraging transfer learning from
pre-trained networks on large natural image datasets [8], [9], [10], [11].

2 Methodology

The systematic construction and rigorous evaluation of the classification models were executed through a
meticulously structured process. This encompassed the comprehensive acquisition and preparation of data, the
precise architectural definition of the deep learning models and the strategic feature extraction for the classical
method, culminating in the configuration of training and evaluation parameters.

2.1. Data Collection and Preparation: For the purpose of this study, a robust dataset of chest X-ray (CXR)
images was procured from a publicly available and ethically sanctioned repository, thereby ensuring the
requisite diversity for the multiclass classification task. The data Source pertaining to the COVID-19,
Pneumonia (non-COVID), and Normal categories were sourced from the "COVID-19, Pneumonia, Normal
Chest X-Ray Images" dataset, readily accessible via Kaggle [12]. This comprehensive dataset consolidates a
unified collection of CXR images directly pertinent to the three designated classification classes. The aggregate
dataset comprised a total of 5,228 images, judiciously distributed as follows: COVID-19: 1,626 images,
Pneumonia: 1,800 images and Normal: 1,802 images. A meticulous process of class balancing was undertaken
to mitigate potential biases stemming from data imbalances, a critical step for ensuring the generalizability of
the ensuing models.

The Chest X-ray (CXR) dataset, sourced from a public repository on Kaggle [12], underwent stringent
pre-processing to standardize the images and optimize them for model input. This involved uniformly resizing
all images to 256x256 pixels in PNG format, followed by linear normalization of pixel intensity values to the [0,
1] range and replication to 3 channels. Subsequently, the dataset was strategically partitioned into 80% for
training, 10% for validation, and 10% for testing using a stratified sampling approach to ensure proportional
representation of each class across all subsets, thereby facilitating robust model training and unbiased
evaluation.

2.2. Model Architectures and Feature Extraction: This investigation implemented and comparatively assessed
three distinct classification paradigms: two deep learning models predicated on pre-trained convolutional
architectures (InceptionV3 and ResNet152V2), and a classical machine learning model (SVM operating on
intensity histograms).

2.2.1. Classification Method 1: Convolutional Neural Network with InceptionV3: The inaugural classification
method was predicated upon the InceptionV3 architecture, a deep Convolutional Neural Network meticulously
pre-trained on the expansive ImageNet dataset [3]. InceptionV3 is renowned for its computational efficacy and
its inherent capacity to capture multi-scale features through its innovative "Inception modules." A transfer
learning paradigm was rigorously applied, recognized for its pronounced effectiveness in medical image
classification tasks, particularly where domain-specific datasets may be comparatively limited vis-a-vis
ImageNet.

The InceptionV3 model was implemented by instantiating the pre-trained weights='imagenet' model, critically
excluding its uppermost classification layer (include top=False) to repurpose its formidable low- and mid-level
feature representations. The convolutional layers of this base model were initially "frozen" to preserve
pre-trained knowledge and direct early learning to newly appended layers. Custom layers were then judiciously
added for chest X-ray classification, including a GlobalAveragePooling2D layer for dimensionality reduction, a
Dense layer with 256 relu units for complex feature combinations, a Dropout layer (rate 0.5) for regularization,
and a terminal Dense(3, activation="softmax') output layer for class probabilities. Following an initial training
phase with frozen base layers, a meticulous "fine-tuning" procedure was executed, entailing unfreezing a select
subset of the terminal convolutional layers within the base model and retraining the integrated model at a



substantially reduced learning rate, allowing it to subtly adapt its pre-trained features to the specific nuances of
the CXR image domain.

2.2.2. Classification Method 2: Convolutional Neural Network with ResNet152V2: The second classification
methodology was grounded in the venerable ResNet152V2 architecture, a Residual Network characterized by its
"residual connections" which critically facilitate the training of exceptionally deep neural networks without
encountering deleterious vanishing gradient phenomena, thereby markedly enhancing accuracy in a multitude of
computer vision tasks [13]. For its implementation, the pre-trained ResNet152V2 model (weights='imagenet')
was loaded, specifically omitting its top-level classification layers (include_ top=False). The convolutional layers
of this foundational architecture were initially "frozen" to leverage the comprehensive feature representations
acquired during its initial pre-training. Custom layers, meticulously adapted for the multiclass chest X-ray
classification task, were then appended, mirroring the structural composition employed for InceptionV3: a
GlobalAveragePooling2D layer, a Dense layer with 256 units and relu activation, a Dropout layer with a rate of
0.5, and a Dense(3, activation='softmax') output layer. Finally, a strategic "fine-tuning" phase was instituted,
wherein a designated subset of the uppermost layers of the base model was unfrozen and subsequently retrained
in conjunction with the newly added classification layers, employing a diminished learning rate to optimally
calibrate performance on the CXR dataset.

2.2.3. Classification Method 3: Classical Machine Learning (SVM with Intensity Histograms): The third
classification approach adopted a classical machine learning paradigm, employing a Support Vector Machine
(SVM) trained on conventionally extracted image features: intensity histograms. For each CXR image, an
intensity histogram was computed from a single channel (due to the grayscale nature and channel replication),
with granularity defined by a specific number of bins (e.g., 256). These histogram feature vectors were then
normalized to a sum of 1, ensuring invariance to brightness variations. Upon extraction of these features, an
SVM was utilized for the classification task [14], typically employing a radial basis function (RBF) kernel. The
SVM's hyperparameters, including regularization parameter C and kernel parameter gamma, underwent rigorous
optimization via a grid search methodology coupled with cross-validation on the training set to maximize
predictive performance. It is worth noting that while intensity histograms were used, advanced methods like
Histograms of Oriented Gradients (HOQG) are also prevalent in computer vision for similar tasks [15].

2.3. Training and Evaluation Configuration: The implemented models were compiled and trained using the
TensorFlow 2.x framework, with Keras for deep learning models and scikit-learn for the classical machine
learning model. For deep learning models (InceptionV3 and ResNet152V2), CategoricalCrossentropy served as
the loss function, and the Adam optimizer was employed with meticulously adjusted learning rates (e.g., 0.001
for initial training, 0.00001 for fine-tuning). Key metrics like accuracy and loss, along with their validation
counterparts, were monitored during training, while comprehensive metrics including overall accuracy,
confusion matrix, Precision, Recall, and Fl-score were computed on the test set. Deep learning models were
trained over a predetermined number of epochs (e.g., 50-100) with a batch _size of 32, integrating Keras
callbacks such as ModelCheckpoint and EarlyStopping to enhance efficiency and prevent overfitting. In
contrast, the SVM model was trained directly on extracted feature vectors from the training set, and its
evaluation was conducted on the test set using standard metrics. The computational framework, implemented in
Python 3.x, leveraged essential libraries like NumPy, Pandas, and Matplotlib/Seaborn, with resource-intensive
deep learning training executed on a GPU-accelerated environment.

3 Results

This section presents the performance of the InceptionV3, ResNet152V2, and SVM models for classifying chest
X-ray images into COVID-19, Pneumonia, and Normal categories. All results were derived from the unseen test
set, ensuring an unbiased evaluation of the models' generalization capabilities. The deep learning models,
InceptionV3 and ResNet152V2, demonstrated significant superiority, with InceptionV3 achieving the highest
overall accuracy.



3.1. Overall and Class-wise Performance: Table 1 summarizes the overall accuracy of the models on the test set,
highlighting the marked difference between deep learning approaches and the classical method.

Model Overall Accuracy (%)
InceptionV3 98.85
ResNet152V2 98.66
SVM (Histograms) 69.23

Table 1: Overall Accuracy of Models on the Test Set

Tables 2, 3, and 4 detail the class-wise metrics (Precision, Recall, F1-Score) for each model, offering a granular
evaluation of their performance. InceptionV3 and ResNet152V2 showed excellent metrics (generally >97%)
across all classes, with the 'Normal' class being the easiest to classify. In contrast, the SVM exhibited
significantly lower performance (62-73%) across all categories.

Class Precision (%) Recall (%) F1-Score (%)
COVID-19 98 98 98
Pneumonia 99 99 99

Normal 100 100 100

Table 2: Class-wise Metrics for the InceptionV3 Model.

Class Precision (%) Recall (%) F1-Score (%)
COVID-19 98 97 97
Pneumonia 98 99 99

Normal 99 99 99
Table 3: Class-wise Metrics for the ResNet152V2 Model.

Class Precision (%) Recall (%) F1-Score (%)
COVID-19 69 73 71
Pneumonia 71 65 68

Normal 62 64 63

Table 4: Class-wise Metrics for the SVM (Intensity Histograms) Model.




3.2. Comprehensive Comparison and Confusion Matrix: Figure 1 provides a comprehensive visual comparison
of the three models' performance across all class-wise metrics. It clearly demonstrates the superiority of
InceptionV3 and ResNet152V2 over SVM and allows for observation of their subtle differences. Figure 2
presents the confusion matrix for the InceptionV3 model, precisely illustrating correct and incorrect predictions
and the distribution of classification errors. This consolidated graph compares the Precision, Recall, and
F1-Score of InceptionV3, ResNet152V2, and SVM for each of the three classes, demonstrating the dominance
of the neural network-based models.

Comparative Performance of Models by Class and Metric on the Test Set
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Figure 1: Comparative Performance of Models by Class and Metric on the Test Set.

This matrix visualizes the distribution of InceptionV3 model predictions on the test set, with correct
classifications along the main diagonal and misclassifications off-diagonal, confirming its high accuracy.
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Figure 2: Confusion Matrix for the InceptionV3 Model.
4 Discussion

The meticulous empirical analysis of the results, as detailed in Section 3, provides a profound and nuanced
understanding of the performance characteristics exhibited by the three classification methodologies applied to
chest X-ray images for the discernment of COVID-19, pneumonia, and normal lung patterns. This analysis
unequivocally demonstrates that deep learning models, InceptionV3 and ResNet152V2, substantially



outperformed the classical SVM model that leverages intensity histograms. This superiority is attributed to
CNNs' inherent ability to learn complex, hierarchical features directly from the images, a capability the SVM,
reliant solely on intensity histograms, lacked. InceptionV3 slightly edged out ResNet152V2 in overall accuracy
(98.85% vs. 98.66%) and showed marginally better class-wise metrics, exhibiting a more stable convergence in
its training and validation curves with fewer signs of overfitting. The most significant challenge for all models,
due to inherent radiological overlap, was differentiating between COVID-19 and Pneumonia, as evidenced by
cross-classification errors in confusion matrices, a task where the SVM was notably ineffective. Clinically, these
findings highlight the substantial potential of deep learning models as valuable assistive tools for rapid diagnosis
and triage in healthcare. However, the study acknowledges limitations, such as potential dataset
representativeness, and proposes future work including external validation, model interpretability using
techniques like Grad-CAM, and integrating additional clinical data to further enhance diagnostic accuracy.

5 Conclusion

This research unequivocally demonstrated the feasibility and superior performance of Convolutional Neural
Networks (InceptionV3 and ResNet152V2) for the automated classification of chest X-ray images into three
critically important categories: COVID-19, Pneumonia, and Normal. Both deep learning models demonstrably
outperformed the classical machine learning approach, SVM utilizing intensity histograms, reinforcing the
established superiority of autonomously learned features by CNNs. Specifically, InceptionV3 exhibited a
marginal, yet discernible, performance advantage on this particular dataset, achieving high accuracy and robust
F1 metrics across all classes. These findings underscore the profound potential of artificial intelligence to
function as an indispensable adjunct tool for healthcare professionals, facilitating expedited and accurate
differential diagnosis of pulmonary pathologies, and consequently contributing significantly to enhanced
management strategies during current and future public health crises.
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