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Abstract. The COVID-19 pandemic highlighted the need for rapid diagnostic tools. This 
study develops and evaluates automated classification models for Chest X-ray (CXR) 
images to distinguish between COVID-19, Pneumonia, and Normal cases. We utilized 
InceptionV3 and ResNet152V2 deep learning architectures with transfer learning, 
alongside a classical Support Vector Machine (SVM) approach based on intensity 
histograms. Using a large public CXR dataset, our findings robustly affirm these methods' 
capability to accurately differentiate pulmonary states. This work presents promising 
avenues for augmenting clinical decision support in differential diagnosis and patient 
management, aiming to ease radiologists burden and streamline patient triage. 
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1​ Introduction 

The unprecedented emergence of the COVID-19 pandemic precipitated a critical demand for expeditious and 
reliable diagnostic capabilities on a global scale. While reverse transcription-polymerase chain reaction 
(RT-PCR) assays remain the benchmark for direct SARS-CoV-2 detection, limitations pertaining to their 
accessibility, processing latency, and inherent variability in sensitivity have catalyzed the exploration of 
complementary diagnostic modalities [1]. Medical imaging, particularly Computed Tomography (CT) of the 
chest and, crucially, Chest X-rays (CXR), has assumed a pivotal role in the assessment of disease extent and the 
longitudinal monitoring of patient cohorts [2]. 

CXR examinations are particularly esteemed for their economic viability, widespread availability across diverse 
clinical environments, and the celerity with which image acquisition can be accomplished. Notwithstanding 
these advantages, the interpretation of CXR images to differentiate between pulmonary patterns indicative of 
COVID-19, other forms of pneumonia (both bacterial and non-COVID viral), and physiologically normal lungs 
can be inherently intricate and prone to subjective variability, necessitating the discernment of highly skilled 
radiologists [3]. Clinical manifestations of COVID-19 on CXR often include bilateral peripheral ground-glass 
opacities and multifocal consolidations, patterns that can significantly overlap with those observed in other viral 
or bacterial pneumonias [7]. Bacterial pneumonias, for instance, typically present with well-demarcated lobar 
consolidations, whereas other viral pneumonias might display diffuse interstitial patterns, underscoring the 
diagnostic challenges. In contexts characterized by elevated clinical demand, an augmented workload and 
resultant clinician fatigue may inadvertently compromise diagnostic precision and timeliness.  Within this 
overarching framework, Artificial Intelligence (AI), and specifically the domain of Deep Learning, has evinced 
extraordinary proficiency in the analytical scrutiny of medical imagery [6]. Convolutional Neural Networks 
(CNNs), by virtue of their intrinsic capacity to extract hierarchical features directly from raw data, have 
facilitated momentous advancements in image classification and segmentation tasks [4]. Computer-aided 
diagnosis (CAD) systems predicated upon CNN architectures hold substantial promise as objective 
second-opinion mechanisms, efficient triage instruments, or proactive early warning systems, thereby enhancing 
procedural efficiency and potentially refining diagnostic accuracy [5]. The widespread application of CNNs for 



 

COVID-19 detection in medical images has been extensively explored, often leveraging transfer learning from 
pre-trained networks on large natural image datasets [8], [9], [10], [11]. 

2​ Methodology 

The systematic construction and rigorous evaluation of the classification models were executed through a 
meticulously structured process. This encompassed the comprehensive acquisition and preparation of data, the 
precise architectural definition of the deep learning models and the strategic feature extraction for the classical 
method, culminating in the configuration of training and evaluation parameters. 

2.1. Data Collection and Preparation: For the purpose of this study, a robust dataset of chest X-ray (CXR) 
images was procured from a publicly available and ethically sanctioned repository, thereby ensuring the 
requisite diversity for the multiclass classification task. The data Source pertaining to the COVID-19, 
Pneumonia (non-COVID), and Normal categories were sourced from the "COVID-19, Pneumonia, Normal 
Chest X-Ray Images" dataset, readily accessible via Kaggle [12]. This comprehensive dataset consolidates a 
unified collection of CXR images directly pertinent to the three designated classification classes. The aggregate 
dataset comprised a total of 5,228 images, judiciously distributed as follows: COVID-19: 1,626 images, 
Pneumonia: 1,800 images and Normal: 1,802 images. A meticulous process of class balancing was undertaken 
to mitigate potential biases stemming from data imbalances, a critical step for ensuring the generalizability of 
the ensuing models. 

The Chest X-ray (CXR) dataset, sourced from a public repository on Kaggle [12], underwent stringent 
pre-processing to standardize the images and optimize them for model input. This involved uniformly resizing 
all images to 256x256 pixels in PNG format, followed by linear normalization of pixel intensity values to the [0, 
1] range and replication to 3 channels. Subsequently, the dataset was strategically partitioned into 80% for 
training, 10% for validation, and 10% for testing using a stratified sampling approach to ensure proportional 
representation of each class across all subsets, thereby facilitating robust model training and unbiased 
evaluation. 

2.2. Model Architectures and Feature Extraction: This investigation implemented and comparatively assessed 
three distinct classification paradigms: two deep learning models predicated on pre-trained convolutional 
architectures (InceptionV3 and ResNet152V2), and a classical machine learning model (SVM operating on 
intensity histograms). 

2.2.1. Classification Method 1: Convolutional Neural Network with InceptionV3: The inaugural classification 
method was predicated upon the InceptionV3 architecture, a deep Convolutional Neural Network meticulously 
pre-trained on the expansive ImageNet dataset [3]. InceptionV3 is renowned for its computational efficacy and 
its inherent capacity to capture multi-scale features through its innovative "Inception modules." A transfer 
learning paradigm was rigorously applied, recognized for its pronounced effectiveness in medical image 
classification tasks, particularly where domain-specific datasets may be comparatively limited vis-à-vis 
ImageNet. 

The InceptionV3 model was implemented by instantiating the pre-trained weights='imagenet' model, critically 
excluding its uppermost classification layer (include_top=False) to repurpose its formidable low- and mid-level 
feature representations. The convolutional layers of this base model were initially "frozen" to preserve 
pre-trained knowledge and direct early learning to newly appended layers. Custom layers were then judiciously 
added for chest X-ray classification, including a GlobalAveragePooling2D layer for dimensionality reduction, a 
Dense layer with 256 relu units for complex feature combinations, a Dropout layer (rate 0.5) for regularization, 
and a terminal Dense(3, activation='softmax') output layer for class probabilities. Following an initial training 
phase with frozen base layers, a meticulous "fine-tuning" procedure was executed, entailing unfreezing a select 
subset of the terminal convolutional layers within the base model and retraining the integrated model at a 



 

substantially reduced learning rate, allowing it to subtly adapt its pre-trained features to the specific nuances of 
the CXR image domain. 

2.2.2. Classification Method 2: Convolutional Neural Network with ResNet152V2: The second classification 
methodology was grounded in the venerable ResNet152V2 architecture, a Residual Network characterized by its 
"residual connections" which critically facilitate the training of exceptionally deep neural networks without 
encountering deleterious vanishing gradient phenomena, thereby markedly enhancing accuracy in a multitude of 
computer vision tasks [13]. For its implementation, the pre-trained ResNet152V2 model (weights='imagenet') 
was loaded, specifically omitting its top-level classification layers (include_top=False). The convolutional layers 
of this foundational architecture were initially "frozen" to leverage the comprehensive feature representations 
acquired during its initial pre-training. Custom layers, meticulously adapted for the multiclass chest X-ray 
classification task, were then appended, mirroring the structural composition employed for InceptionV3: a 
GlobalAveragePooling2D layer, a Dense layer with 256 units and relu activation, a Dropout layer with a rate of 
0.5, and a Dense(3, activation='softmax') output layer. Finally, a strategic "fine-tuning" phase was instituted, 
wherein a designated subset of the uppermost layers of the base model was unfrozen and subsequently retrained 
in conjunction with the newly added classification layers, employing a diminished learning rate to optimally 
calibrate performance on the CXR dataset. 

2.2.3. Classification Method 3: Classical Machine Learning (SVM with Intensity Histograms): The third 
classification approach adopted a classical machine learning paradigm, employing a Support Vector Machine 
(SVM) trained on conventionally extracted image features: intensity histograms. For each CXR image, an 
intensity histogram was computed from a single channel (due to the grayscale nature and channel replication), 
with granularity defined by a specific number of bins (e.g., 256).  These histogram feature vectors were then 
normalized to a sum of 1, ensuring invariance to brightness variations. Upon extraction of these features, an 
SVM was utilized for the classification task [14], typically employing a radial basis function (RBF) kernel. The 
SVM's hyperparameters, including regularization parameter C and kernel parameter gamma, underwent rigorous 
optimization via a grid search methodology coupled with cross-validation on the training set to maximize 
predictive performance. It is worth noting that while intensity histograms were used, advanced methods like 
Histograms of Oriented Gradients (HOG) are also prevalent in computer vision for similar tasks [15]. 

2.3. Training and Evaluation Configuration: The implemented models were compiled and trained using the 
TensorFlow 2.x framework, with Keras for deep learning models and scikit-learn for the classical machine 
learning model. For deep learning models (InceptionV3 and ResNet152V2), CategoricalCrossentropy served as 
the loss function, and the Adam optimizer was employed with meticulously adjusted learning rates (e.g., 0.001 
for initial training, 0.00001 for fine-tuning). Key metrics like accuracy and loss, along with their validation 
counterparts, were monitored during training, while comprehensive metrics including overall accuracy, 
confusion matrix, Precision, Recall, and F1-score were computed on the test set. Deep learning models were 
trained over a predetermined number of epochs (e.g., 50-100) with a batch_size of 32, integrating Keras 
callbacks such as ModelCheckpoint and EarlyStopping to enhance efficiency and prevent overfitting. In 
contrast, the SVM model was trained directly on extracted feature vectors from the training set, and its 
evaluation was conducted on the test set using standard metrics. The computational framework, implemented in 
Python 3.x, leveraged essential libraries like NumPy, Pandas, and Matplotlib/Seaborn, with resource-intensive 
deep learning training executed on a GPU-accelerated environment. 

3​ Results 

This section presents the performance of the InceptionV3, ResNet152V2, and SVM models for classifying chest 
X-ray images into COVID-19, Pneumonia, and Normal categories. All results were derived from the unseen test 
set, ensuring an unbiased evaluation of the models' generalization capabilities. The deep learning models, 
InceptionV3 and ResNet152V2, demonstrated significant superiority, with InceptionV3 achieving the highest 
overall accuracy. 



 

3.1. Overall and Class-wise Performance: Table 1 summarizes the overall accuracy of the models on the test set, 
highlighting the marked difference between deep learning approaches and the classical method. 

 

Model Overall Accuracy (%) 

InceptionV3 98.85 

ResNet152V2 98.66 

SVM (Histograms) 69.23 

Table 1: Overall Accuracy of Models on the Test Set 

Tables 2, 3, and 4 detail the class-wise metrics (Precision, Recall, F1-Score) for each model, offering a granular 
evaluation of their performance. InceptionV3 and ResNet152V2 showed excellent metrics (generally >97%) 
across all classes, with the 'Normal' class being the easiest to classify. In contrast, the SVM exhibited 
significantly lower performance (62-73%) across all categories. 

 

 

 

 

 

Table 2: Class-wise Metrics for the InceptionV3 Model. 

 

 

 

 

 

Table 3: Class-wise Metrics for the ResNet152V2 Model. 

 

 

 

 

 

Table 4: Class-wise Metrics for the SVM (Intensity Histograms) Model. 

Class Precision (%) Recall (%) F1-Score (%) 

COVID-19 98 98 98 

Pneumonia 99 99 99 

Normal 100 100 100 

Class Precision (%) Recall (%) F1-Score (%) 

COVID-19 98 97 97 

Pneumonia 98 99 99 

Normal 99 99 99 

Class Precision (%) Recall (%) F1-Score (%) 

COVID-19 69 73 71 

Pneumonia 71 65 68 

Normal 62 64 63 



 

3.2. Comprehensive Comparison and Confusion Matrix: Figure 1 provides a comprehensive visual comparison 
of the three models' performance across all class-wise metrics. It clearly demonstrates the superiority of 
InceptionV3 and ResNet152V2 over SVM and allows for observation of their subtle differences. Figure 2 
presents the confusion matrix for the InceptionV3 model, precisely illustrating correct and incorrect predictions 
and the distribution of classification errors. This consolidated graph compares the Precision, Recall, and 
F1-Score of InceptionV3, ResNet152V2, and SVM for each of the three classes, demonstrating the dominance 
of the neural network-based models. 

 

Figure 1: Comparative Performance of Models by Class and Metric on the Test Set.  

This matrix visualizes the distribution of InceptionV3 model predictions on the test set, with correct 
classifications along the main diagonal and misclassifications off-diagonal, confirming its high accuracy. 

 

Figure 2: Confusion Matrix for the InceptionV3 Model.  

4​ Discussion 
 
The meticulous empirical analysis of the results, as detailed in Section 3, provides a profound and nuanced 
understanding of the performance characteristics exhibited by the three classification methodologies applied to 
chest X-ray images for the discernment of COVID-19, pneumonia, and normal lung patterns. This analysis 
unequivocally demonstrates that deep learning models, InceptionV3 and ResNet152V2, substantially 



 

outperformed the classical SVM model that leverages intensity histograms. This superiority is attributed to 
CNNs' inherent ability to learn complex, hierarchical features directly from the images, a capability the SVM, 
reliant solely on intensity histograms, lacked. InceptionV3 slightly edged out ResNet152V2 in overall accuracy 
(98.85% vs. 98.66%) and showed marginally better class-wise metrics, exhibiting a more stable convergence in 
its training and validation curves with fewer signs of overfitting. The most significant challenge for all models, 
due to inherent radiological overlap, was differentiating between COVID-19 and Pneumonia, as evidenced by 
cross-classification errors in confusion matrices, a task where the SVM was notably ineffective. Clinically, these 
findings highlight the substantial potential of deep learning models as valuable assistive tools for rapid diagnosis 
and triage in healthcare. However, the study acknowledges limitations, such as potential dataset 
representativeness, and proposes future work including external validation, model interpretability using 
techniques like Grad-CAM, and integrating additional clinical data to further enhance diagnostic accuracy. 

5​ Conclusion 

This research unequivocally demonstrated the feasibility and superior performance of Convolutional Neural 
Networks (InceptionV3 and ResNet152V2) for the automated classification of chest X-ray images into three 
critically important categories: COVID-19, Pneumonia, and Normal. Both deep learning models demonstrably 
outperformed the classical machine learning approach, SVM utilizing intensity histograms, reinforcing the 
established superiority of autonomously learned features by CNNs. Specifically, InceptionV3 exhibited a 
marginal, yet discernible, performance advantage on this particular dataset, achieving high accuracy and robust 
F1 metrics across all classes. These findings underscore the profound potential of artificial intelligence to 
function as an indispensable adjunct tool for healthcare professionals, facilitating expedited and accurate 
differential diagnosis of pulmonary pathologies, and consequently contributing significantly to enhanced 
management strategies during current and future public health crises. 
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