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Abstract Chest X-rays are fundamental tools in diagnosing thoracic diseases due to their
accessibility and informative value. The automatic detection of anomalies in chest radiographs
using deep learning has shown promising results, especially with convolutional neural networks
(CNNs). In this study, it’s evaluated and compared the performance of three state-of-the-art
CNN architectures: DenseNetl121, InceptionV3, and Xception for multi-class classification of
thoracic abnormalities. I used a public dataset containing nine diagnostic categories, ranging
from normal anatomy to various pathological conditions. All models were fine-tuned with
transfer learning and trained under a uniform pipeline to ensure comparability. The evaluation
metrics included accuracy, Fl-score, precision, and confusion matrices. Experimental results
show that DenseNetl21 achieved the highest overall performance, closely followed by
Xception, while InceptionV3 presented slightly lower metrics. These findings highlight the
relevance of architecture selection in automated chest X-ray analysis and its potential role in

clinical decision support systems.
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1. Introduction

Chest radiographs are one of the most commonly used medical imaging modalities in clinical
practice. They are essential for diagnosing a wide range of conditions, from lung infections and
heart enlargement to fractures and tumors. However, accurate interpretation can be challenging
due to overlapping anatomical structures and subtle pathological signs, which increases the
likelihood of human error.

In recent years, deep learning techniques(especially convolutional neural networks (CNNs))
have demonstrated remarkable capabilities in medical image analysis. CNNs automatically learn
hierarchical feature representations from data, eliminating the need for manual feature
extraction. These models have been successfully applied to various domains, including

dermatology, ophthalmology, and radiology.
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This study explores and compares three advanced CNN architectures; DenseNetl21,
InceptionV3 and Xception, for the detection of thoracic anomalies in chest X-rays. Both
networks have been pre-trained on the ImageNet dataset and fine-tuned for multi-label classification

of chest diseases. We aim to evaluate their diagnostic performance and suitability for real-world

deployment in clinical screening systems.

2. Methodology

2.1 Dataset

We utilized the publicly available "X-ray Lung Diseases Images (9 classes)" dataset from
Kaggle, which includes thousands of chest radiographs annotated into nine diagnostic classes.
These classes represent a range of thoracic anomalies including normal anatomy, inflammatory
processes, density changes (increased or decreased), obstructive and infectious-degenerative
diseases, encapsulated lesions, mediastinal alterations, and thoracic structural changes.

To ensure balanced training, we selected a subset of 4,500 images with 500 samples per class.
This balanced setup improves training stability and allows fair performance comparison across

categories.

2.2 Image Preprocessing

All images were resized to 224224 pixels to match the input dimensions required by the CNN
models. Pixel values were normalized to the [0, 1] range, and preprocessing techniques such as
histogram equalization and zero-mean standardization were applied to enhance contrast and
emphasize pathological features. These adjustments are particularly important for chest X-rays,

where anomalies may appear subtle and dispersed.

2.3 CNN Architectures

For this study, three convolutional neural networks (CNN) architectures were implemented, that
are widely recognized for their strong performance in image classification tasks. The first
model, DenseNet121, is characterized by its densely connected layers, which promote efficient
feature reuse and strengthen gradient flow throughout the network. This architectural design
helps reduce the number of parameters while maintaining high accuracy.The second model,
InceptionV3, employs inception modules that allow for parallel convolutional operations at
multiple scales. This multi-branch structure enables the network to capture both fine and coarse
features simultaneously, making it particularly effective for complex image datasets such as

medical scans.
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The third model, Xception, builds upon the Inception framework by replacing standard
convolutions with depthwise separable convolutions. This modification significantly reduces
computational complexity while retaining high representational power, allowing the network to

learn intricate spatial patterns with fewer parameters.

2.4 Training Strategy

Transfer learning was performed using pre-trained ImageNet weights. Training was carried out

in two phases:

1. Feature extraction: The convolutional base was frozen while only the top classifier
layers were trained.
2. Fine-tuning: We selectively unfroze parts of the convolutional base:
o DenseNetl121: last 30 layers
o InceptionV3: last 20 layers
o Xception: last 10 layers

The models were trained using the Adam optimizer and categorical cross-entropy loss. Early
stopping and learning rate reduction on plateau were applied to improve generalization and

prevent overfitting.

3. Results

3.1 Quantitative Evaluation

InceptionV3 demonstrated strong overall performance, with high classification accuracy across

training and validation sets. Table 1 summarizes the results per epoch.

Figure 1 Accuracy (left) and loss (right) curves during training and validation of InceptionV’3.
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The model achieved perfect validation accuracy (100%) in multiple epochs and
maintained validation loss near zero for most of the training process, indicating a highly
effective feature learning process. However, the drop in accuracy in epoch 9 may suggest
transient overfitting or batch variance. (Figure I)

DenseNet121 achieved outstanding performance during training, with rapid convergence and
excellent generalization. Validation accuracy reached 100% consistently from epoch 6 onward,
with extremely low loss values, suggesting that the model effectively learned discriminative

features across the 9 thoracic classes

Figure 2. Accuracy (left) and loss (right) curves during training and validation of DenseNet121.
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(Figure 2.) Shows the accuracy and loss curves for DenseNet121. The rapid stabilization and
overlapping curves in both training and validation metrics indicate an optimal learning process,
with minimal overfitting.

The Xception model showed rapid improvements during early training stages, achieving
training accuracies above 99% from epoch 10 onwards. However, validation performance was

notably inconsistent, with accuracy values oscillating significantly across epochs.

Figure 3. Accuracy (left) and loss (right) curves during training and validation of Xception.
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Despite achieving strong training accuracy, the final validation accuracy settled at 96.88%,
slightly below the highest observed (97.22%). The performance curve (Figure 3) shows sharp

oscillations in validation metrics, indicating challenges in model generalization and stability.

Further analysis using the confusion matrix revealed a total of 12 misclassified images across
the 9 classes. The errors were concentrated in visually similar categories such as inflammatory
vs. infectious-degenerative conditions, and obstructive vs. density-related abnormalities. This
suggests that Xception struggled to separate overlapping radiographic patterns, possibly due to

underfitting in the deeper layers or insufficient regularization.

These results position DenseNetl21 as the top-performing architecture in this study,

outperforming InceptionV3 in both stability and final accuracy.

3.2 Confusion Analysis
Figure 4 Confusion Matrix Analysis

Confusion matrices indicated that DenseNetl21 struggled less with misclassifying visually
similar conditions such as infiltration vs. pneumonia, thanks to its dense connections enabling
nuanced feature retention. In contrast, InceptionV3 showed higher precision but slightly lower

recall for subtle classes.

4. Discussion

The comparative results highlight the importance of CNN architecture design in thoracic
anomaly detection. DenseNet121 demonstrated superior performance due to its ability to
preserve and reuse features through dense connections. This is particularly beneficial in chest

X-ray analysis, where subtle differences in texture or density are critical.
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Xception, while less deep, benefits from its efficient separable convolutions, enabling robust
generalization with fewer parameters. InceptionV3, though still effective, showed limitations in
distinguishing between complex overlapping patterns, which may be mitigated through further

fine-tuning or hybrid approaches.

These findings are consistent with prior studies showing that deeper and more recent
architectures tend to outperform older models in medical imaging tasks, especially when trained

with balanced datasets and proper regularization.

5. Conclusion

This study compared the effectiveness of DenseNet121, InceptionV3, and Xception for the
multi-class classification of chest X-ray anomalies. DenseNetl21 achieved the highest
performance, indicating its strong potential for clinical deployment in diagnostic support
systems. Xception also proved competitive, while InceptionV3 showed acceptable performance

but room for improvement.

Overall, the results underscore the significance of model architecture in medical image
classification. DenseNetl21 proved to be the most robust and accurate, followed by
InceptionV3 with strong but slightly less consistent performance, and Xception showing good
learning capacity but less generalization under the current training conditions. Future work
could explore ensemble models or hybrid architectures to combine their strengths and improve

diagnostic precision in clinical applications.
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