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Abstract Chest X-rays are fundamental tools in diagnosing thoracic diseases due to their 

accessibility and informative value. The automatic detection of anomalies in chest radiographs 

using deep learning has shown promising results, especially with convolutional neural networks 

(CNNs). In this study, it´s evaluated and compared the performance of three state-of-the-art 

CNN architectures: DenseNet121, InceptionV3, and Xception for multi-class classification of 

thoracic abnormalities. I used a public dataset containing nine diagnostic categories, ranging 

from normal anatomy to various pathological conditions. All models were fine-tuned with 

transfer learning and trained under a uniform pipeline to ensure comparability. The evaluation 

metrics included accuracy, F1-score, precision, and confusion matrices. Experimental results 

show that DenseNet121 achieved the highest overall performance, closely followed by 

Xception, while InceptionV3 presented slightly lower metrics. These findings highlight the 

relevance of architecture selection in automated chest X-ray analysis and its potential role in 

clinical decision support systems. 
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1. Introduction 
Chest radiographs are one of the most commonly used medical imaging modalities in clinical 

practice. They are essential for diagnosing a wide range of conditions, from lung infections and 

heart enlargement to fractures and tumors. However, accurate interpretation can be challenging 

due to overlapping anatomical structures and subtle pathological signs, which increases the 

likelihood of human error. 

In recent years, deep learning techniques(especially convolutional neural networks (CNNs)) 

have demonstrated remarkable capabilities in medical image analysis. CNNs automatically learn 

hierarchical feature representations from data, eliminating the need for manual feature 

extraction. These models have been successfully applied to various domains, including 

dermatology, ophthalmology, and radiology. 
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This study explores and compares three advanced CNN architectures; DenseNet121, 

InceptionV3 and Xception, for the detection of thoracic anomalies in chest X-rays. Both 

networks have been pre-trained on the ImageNet dataset and fine-tuned for multi-label classification 

of chest diseases. We aim to evaluate their diagnostic performance and suitability for real-world 

deployment in clinical screening systems. 

 

2. Methodology 
2.1 Dataset 

We utilized the publicly available "X-ray Lung Diseases Images (9 classes)" dataset from 

Kaggle, which includes thousands of chest radiographs annotated into nine diagnostic classes. 

These classes represent a range of thoracic anomalies including normal anatomy, inflammatory 

processes, density changes (increased or decreased), obstructive and infectious-degenerative 

diseases, encapsulated lesions, mediastinal alterations, and thoracic structural changes.​

To ensure balanced training, we selected a subset of 4,500 images with 500 samples per class. 

This balanced setup improves training stability and allows fair performance comparison across 

categories. 

 
2.2 Image Preprocessing 

All images were resized to 224×224 pixels to match the input dimensions required by the CNN 

models. Pixel values were normalized to the [0, 1] range, and preprocessing techniques such as 

histogram equalization and zero-mean standardization were applied to enhance contrast and 

emphasize pathological features. These adjustments are particularly important for chest X-rays, 

where anomalies may appear subtle and dispersed. 

 
2.3 CNN Architectures 

For this study, three convolutional neural networks  (CNN) architectures were implemented, that 

are widely recognized for their strong performance in image classification tasks. The first 

model, DenseNet121, is characterized by its densely connected layers, which promote efficient 

feature reuse and strengthen gradient flow throughout the network. This architectural design 

helps reduce the number of parameters while maintaining high accuracy.The second model, 

InceptionV3, employs inception modules that allow for parallel convolutional operations at 

multiple scales. This multi-branch structure enables the network to capture both fine and coarse 

features simultaneously, making it particularly effective for complex image datasets such as 

medical scans. 
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The third model, Xception, builds upon the Inception framework by replacing standard 

convolutions with depthwise separable convolutions. This modification significantly reduces 

computational complexity while retaining high representational power, allowing the network to 

learn intricate spatial patterns with fewer parameters. 

 

 

2.4 Training Strategy 

Transfer learning was performed using pre-trained ImageNet weights. Training was carried out 

in two phases: 

1.​ Feature extraction: The convolutional base was frozen while only the top classifier 

layers were trained. 

2.​ Fine-tuning: We selectively unfroze parts of the convolutional base: 

○​ DenseNet121: last 30 layers 

○​ InceptionV3: last 20 layers 

○​ Xception: last 10 layers 

The models were trained using the Adam optimizer and categorical cross-entropy loss. Early 

stopping and learning rate reduction on plateau were applied to improve generalization and 

prevent overfitting. 

3. Results  

3.1 Quantitative Evaluation 

InceptionV3 demonstrated strong overall performance, with high classification accuracy across 

training and validation sets. Table 1 summarizes the results per epoch. 

Figure 1 Accuracy (left) and loss (right) curves during training and validation of InceptionV3. 
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The model achieved perfect validation accuracy (100%) in multiple epochs and 

maintained validation loss near zero for most of the training process, indicating a highly 

effective feature learning process. However, the drop in accuracy in epoch 9 may suggest 

transient overfitting or batch variance. (Figure 1)​

DenseNet121 achieved outstanding performance during training, with rapid convergence and 

excellent generalization. Validation accuracy reached 100% consistently from epoch 6 onward, 

with extremely low loss values, suggesting that the model effectively learned discriminative 

features across the 9 thoracic classes 

.Figure 2. Accuracy (left) and loss (right) curves during training and validation of DenseNet121. 

 

(Figure 2.) Shows the accuracy and loss curves for DenseNet121. The rapid stabilization and 

overlapping curves in both training and validation metrics indicate an optimal learning process, 

with minimal overfitting.​

The Xception model showed rapid improvements during early training stages, achieving 

training accuracies above 99% from epoch 10 onwards. However, validation performance was 

notably inconsistent, with accuracy values oscillating significantly across epochs. 

Figure 3. Accuracy (left) and loss (right) curves during training and validation of Xception. 
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Despite achieving strong training accuracy, the final validation accuracy settled at 96.88%, 

slightly below the highest observed (97.22%). The performance curve (Figure 3) shows sharp 

oscillations in validation metrics, indicating challenges in model generalization and stability. 

Further analysis using the confusion matrix revealed a total of 12 misclassified images across 

the 9 classes. The errors were concentrated in visually similar categories such as inflammatory 

vs. infectious-degenerative conditions, and obstructive vs. density-related abnormalities. This 

suggests that Xception struggled to separate overlapping radiographic patterns, possibly due to 

underfitting in the deeper layers or insufficient regularization. 

These results position DenseNet121 as the top-performing architecture in this study, 

outperforming InceptionV3 in both stability and final accuracy. 

3.2 Confusion Analysis 
Figure 4 Confusion Matrix Analysis 

 
 

 

 

 
 

 

 

 

 

 

 

Confusion matrices indicated that DenseNet121 struggled less with misclassifying visually 

similar conditions such as infiltration vs. pneumonia, thanks to its dense connections enabling 

nuanced feature retention. In contrast, InceptionV3 showed higher precision but slightly lower 

recall for subtle classes. 

 

4. Discussion 

The comparative results highlight the importance of CNN architecture design in thoracic 

anomaly detection. DenseNet121 demonstrated superior performance due to its ability to 

preserve and reuse features through dense connections. This is particularly beneficial in chest 

X-ray analysis, where subtle differences in texture or density are critical. 
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Xception, while less deep, benefits from its efficient separable convolutions, enabling robust 

generalization with fewer parameters. InceptionV3, though still effective, showed limitations in 

distinguishing between complex overlapping patterns, which may be mitigated through further 

fine-tuning or hybrid approaches. 

These findings are consistent with prior studies showing that deeper and more recent 

architectures tend to outperform older models in medical imaging tasks, especially when trained 

with balanced datasets and proper regularization. 

5. Conclusion 

This study compared the effectiveness of DenseNet121, InceptionV3, and Xception for the 

multi-class classification of chest X-ray anomalies. DenseNet121 achieved the highest 

performance, indicating its strong potential for clinical deployment in diagnostic support 

systems. Xception also proved competitive, while InceptionV3 showed acceptable performance 

but room for improvement. 

Overall, the results underscore the significance of model architecture in medical image 

classification. DenseNet121 proved to be the most robust and accurate, followed by 

InceptionV3 with strong but slightly less consistent performance, and Xception showing good 

learning capacity but less generalization under the current training conditions. Future work 

could explore ensemble models or hybrid architectures to combine their strengths and improve 

diagnostic precision in clinical applications. 
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