Convolutional Neural Network for Detection and
Localization of Intracranial Hemorrhages in Brain CT
Images

Jorge Luis Hernandez Farah™, Ismael Eliezer Pérez Ruiz [?
! Universidad Modelo, Yucatan NJ 08544, MEX

15221784@modelo.edu.mx

Abstract. Intracranial hemorrhage (ICH) is a life- threatening neurological con-
dition that requires urgent and accurate diagnosis. Computed tomography (CT)
is the primary imaging modality used for early detection of ICH, yet manual in-
terpretation of scans remains time-consuming and error-prone, this work pro-
poses a deep learning pipeline based on a U-Net architecture for automated de-
tection and segmentation of ICH in 2D axial brain CT images.

The approach integrates a binary slice level classifier to identify potential hem-
orrhagic slices, followed by a semantic segmentation to delineate hemorrhagic
regions. The system was trained and evaluated on a publicly available dataset of
82 brain CT scans, including more than 2,500 labeled slices across multiple hem-
orrhage subtypes. All images were preprocessed to 512x512 resolution and nor-
malized to a [0, 1] range.

Keywords: Intracranial hemorrhage, image detection, computed tomography,
medical image segmentation, lightweight neural networks.

1 Introduction

Intracraneal hemorrhage (IHC) is a critical condition accounting for about 2 million
strakes worlwide[1], it involves bleeding within the brain parenchyma and can result in
acute neurological deterioration or death. Computed tomography (CT) is the imaging
modality of choice for the early detection of IHC due to its wide availability and high
sensitivity to acute blood [2].

However, manual interpretation of CT scans in emergency settings can be error-prone
and delayed, especially in the absence of experienced radiologists. To address this chal-
lenge, artificial intelligence tools-particularly those based on deep learning-have been
proposed to assist in the automated detection of ICH and support clinical workflows
[3].

Among the deep learning approaches for biomedical image segmentation, the U-Net
architecture has emerged as a particularly successful solution. Originally proposed by
Ronneberger et al. (2015), U-Net features a symmetric encoder-decoder structure with
skip connections that preserve spatial context, allowing it to produce high-resolution



segmentations even with relatively small datasets. This architecture has been success-
fully adapted for ICH segmentation in CT scans, with promising clinical implications
[4].

To improve processing efficiency—especially in head CT studies containing hundreds
of slices—some approaches adopt a two-stage pipeline: an initial binary classification
to filter out non-hemorrhagic slices, followed by segmentation only on relevant patho-
logical slices. This strategy reduces computational costs and avoids unnecessary seg-
mentation [5].

This study proposes a fully U-Net-based deep learning system for the automatic seg-
mentation of ICH in axial brain CT images. The pipeline integrates an initial slice level
classifier to detect haemorrhage presence, followed by a semantic segmentation to de-
lineate locate haemorrhagic regions.

2 Methodology

In this work it is proposed a deep learning pipeline for the automatic detection and
segmentation of intracranial haemorrhages in brain CT images. The methodology con-
sists of two main stages: (1) slice-level binary classification to identify the presence of
haemorrhage, and (2) sematic segmentation using a U-Net architecture to locate haem-
orrhagic regions. The complete workflow is detailed below.

2.1  Dataset description

A dataset of 82 non-contrast brain CT scans was used in this study, comprising 36 scans
diagnosed with intracranial hemorrhage (ICH). These positive cases represent various
hemorrhage subtypes, including intraventricular, intraparenchymal, subarachnoid, epi-
dural, and subdural hemorrhages. Each scan consists of approximately 30 axial slices
with a slice thickness of 5 mm.

A lightweight convolutional classifier was first trained to predict whether a given CT
slice contained visible hemorrhage, this step aimed to reduce computational overhead
by avoiding unnecessary segmentation of normal slices.

All slices were independently reviewed by two board-certified radiologists. Hemor-
rhage types and the presence of skull fractures were recorded when identified, hemor-
rhagic regions were manually delineated, and consensus was reached for all segmenta-
tions.

The dataset is organized in two formats: (1) a Patients_CT directory containing 2D axial
slices in JPG format, organized by patient ID, and (2) a Raw_Ct_Scans folder with 3D
volumetric NIfTI files available for most patients. Within each folder, a subdirectory
labeled “brain” contains the individual slices and corresponding binary hemorrhage
masks, labeled usings the _HGE_Seg suffix. Accompanying metadata is provided
through structured CSV files: patient_demograhics.csv, hemorrhage_diagnosis.csv,
and hemorrhage_diagnosis_raw_ct.csv [6].



2.2 Preprocessing

All axial CT slices from the brain window modality were organized per patient and
accessed from the Patients_CT directories, where each folder contained sequential
JPEG images representing 5 mm axial slices. Each corresponding segmentation mask,
when present, was stored in the same folder with filenames ending in _HGE_Seg.jpg.
Slices without a corresponding mask were assumed to be negative for hemorrhage.
Each image and mask pair were resized from its original resolution (650x650 pixels) to
512x512 pixels to ensure compatibility with the input layer of the neural network while
preserving anatomical proportion. All pixel values were normalized to the [0, 1] range
by dividing by 255.

Maks images were binarized post resizing using a simple thresholding approach and
saved in PNG format to ensure a consistent 8-bit format. The dataset was then indexed,
and a CSV file was constructed to track each image and its binary label: hemorrhagic
(1) or non-hemorrhagic (0), based on whether the mask was empty or not.

2.3 Model architecture

It was implemented as a lightweight version of the original U-Net architecture for se-
mantic segmentation of hemorrhagic regions. The architecture consists of an encoder —
decoder structure with four level of depth. The encoder is composed of sequential 2D
convolutional layers with a kernel size of 3 x 3 with ReLu activation, followed by max
pooling of 2 x 2 for spatial down sampling. Each block in the encoder doubles the
number of filters (32, 64, 128, 256).

At the bottleneck, two convolutional layers with 256 filters are applied. The decoder
mirrors the encoder with transposed convolution layers to progressively restore the spa-
tial solution. At each decoder stage, skip connections are applied by concatenating fea-
ture maps from the corresponding encoder block, preserving high-frequency infor-
mation [7,8].

To maintain a compact architecture, the model omits batch normalization and dropout
layers. The final output layer uses a 1x1 convolution with sigmoid activation to produce
a pixel wise probability map representing the likelihood of hemorrhagic tissue.

This U-Net variant was implemented using TensorFlow and Keras, with input shape to
512 x 512 for single channel grayscale CT images. The model was compiled with a
custom loss function combining binary cross-entropy and Dice loss, suitable for ad-
dressing both pixel lev accuracy and segmentation overlap [9].

2.4  Training Strategy

The model was trained using a loss function combining binary cross-entropy and Dice
loss, to balance a pixel wise classification accuracy with overlap-based segmentation
performance. The Adam optimizer was used with a learning rate of 1x10. Training
was conducted for up to 40 epoch with a batch size of 8 with early stopping based on
validation Dice coefficient, so it really stopped in the 24" epoch.

To address class imbalance (with hemorrhage or with no hemorrhage), a simple over-
sampling technique was used to replicate positive (hemorrhagic) samples within the



training set. This significantly reduced the number of false negatives and improved
sensitivity. The dataset was split into training (80%) and validation (20%) was set at
the patient level to avoid data leakage between slices of the same subject.

3 Results

The model achieved strong performance in binary classification of hemorrhagic versos
non-hemorrhagic slices, with a recall of 0.89, precision of 0.50, Dice similarity coeffi-
cient of 0.60, and intersection over union (loU) of 0.44. These results reflect the
model’s high sensitivity, which is especially desirable in a clinical screening context to
minize the risk of missed hemorrhages.
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Fig. 3.1 Training and validation Dice coefficient curves. These plots indicate that the model
steadily improved its segmentation performance during the initial epochs, reaching a downgrade
just to be back up around epoch 15.
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Fig. 3.2 Confusion matrix for the final model. It visually highlights the dominance of true nega-
tives and a reasonably balanced detection of hemorrhagic cases.



The confusion matrix revealed 62 true positives, 370 true negatives, 61 false positives,
and only 8 false negatives, confirming that the model was highly effective at detecting
actual cases of hemorrhage. The oversampling strategy for hemorrhagic slices signifi-
cantly improved sensitivity and reduced the number of false negatives compared to
earlier training runs.

The model was further evaluated using per-slice binary classification derived from the
segmentation masks, thresholding applied to determine presence or absence of hemor-
rhage. This classification task showed clear separation between negative and positive
classes, as validated by high recall and low false negative rate.

Qualitative inspection revealed that the U-Net was capable of correctly segmenting
large and small hemorrhagic regions, while maintaining variations in image and ana-
tomical variability. Importantly, predictions on previously unseen slices demonstrated
the model’s capacity to generalize beyond the training distribution.

Overall, the results support the effectiveness of a lightweight U.Net model for intracra-
nial hemorrhage segmentation in 2D axial CT images. The combination of strong recall
and interpretable prediction in segmentations highlights it’s potentially a tool for clini-
cal decision support or radiological triage [10].

To further illustrate the model’s segmentation capabilities, we include visual compari-
sons of its predictions on both familiar and unseen data. Figure 3.3 presents samples
from the training batch, showing the original CT image, the ground truth segmentation
mask, and the model’s predicted mask. These examples demonstrate the model’s ca-
pacity to localize hemorrhagic regions with high spatial accuracy and minimal over-
segmentation.
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Fig. 3.3 Segmentation performance of the model on slices from the training batch. Each row
shows (from left to right): the original brain window CT image, the ground truth hemorrhage
mask, and the predicted segmentation mask generated by the U-Net.

Additionally, Figure 3.4 displays a prediction on a CT slice that was not part of the
training or validation sets. Despite having no prior exposure to the patient, the model
successfully detected the hemorrhagic area, confirming its ability to generalize to new
inputs and maintain prediction quality outside the training distribution.
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Fig. 3.4 Example of model inference on an unseen CT slice not included in the training or vali-
dation sets. Despite no prior exposure to patient data, the model correctly identifies the presence
of hemorrhagic regions.

4 Discussion

The promising performance of lightweight U-Net architecture in this study highlights
its potential applicability in resource constrained medical environments [11]. Com-
pared to deeper or more computationally intensive models, the streamlined designed
approximately 7 million parameters allowed efficient training and inference while
maintaining competitive segmentation quality.

A key strength of the model lies in its high recall (0.89), which is of paramount im-
portance in clinical screening workflows. Missing hemorrhage could result in cata-
strophic consequences, making sensitivity the priority metric. While precision (0.50)
was comparatively lower, it is an acceptable trade off given that false positives can be
addressed by radiologist review, whereas false negatives may go unnoticed.

5 Conclusion

This study presents an effective and computationally efficient approach for the detec-
tion and segmentation of intracranial hemorrhage in axial CT slices using a lightweight
U-Net architecture. Despite the inherent challenges posed by limited training data, class
imbalance, and the variability in hemorrhage presentation, the model achieved high
sensitivity (recall = 0.89) and maintained robust spatial accuracy across diverse scans.
The model’s simplicity, requiring only grayscale brain window images and minimal
preprocessing, supports its integration into real time clinical workflows in the future.
Its strong generalization to unseen data and interpretable output masks provides an
added layer of clinical reliability and transparency.

In conclusion, this work demonstrates the viability and relevance of lightweight deep
learning architectures for critical radiological tasks such as hemorrhage detection and
contributes to the growing bodies of literature supporting the use of artificial intelli-
gence in neuroimaging diagnostics.
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