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Resumen.  

Se presenta el desarrollo de un software en LabVIEW 

enfocado al análisis automatizado de señales inerciales 

obtenidas mediante sensores IMU para su aplicación en 

investigación, rehabilitación y cultura física. El sistema 

combina las funcionalidades de los siguientes paquetes 

de cómputo: Uno para la detección y filtrado de valores 

atípicos mediante una técnica basada en la desviación 

estándar local; Uno que implementa el método de 

detección de picos multiescala (AMPD) para la 

detección de extremos locales; Y otro utilizado para la 

segmentación por flancos de la señal. Se combina el uso 

de dichos paquetes en conjunto con una interfaz 

intuitiva de forma que se le permite al usuario la 

selección de la sección de la señal a realizar el análisis y 

segmentación. La validación de los algoritmos se realizó 

comparando detecciones con datos anotados 

manualmente, mostrando altos valores de sensibilidad 

y precisión. 
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Abstract. This work presents the development of a 

LabVIEW-based software system focused on the 

automated analysis of inertial signals acquired through 

IMU sensors, with applications in research, 

rehabilitation, and physical training. The system 

integrates the functionality of several computational 

modules: one for the detection and filtering of outliers 

using a local standard deviation technique; another 

that implements the multiscale peak detection method 

(AMPD) for identifying local extrema; and a third used 

for signal segmentation based on slope transitions. 

These modules are combined within an intuitive 

graphical interface, allowing the user to select specific 

sections of the signal for analysis and segmentation. The 

algorithms were validated by comparing detected 

events against manually annotated data, showing high 

sensitivity and precision levels 
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I. INTRODUCCIÓN 

El análisis del movimiento humano ha cobrado creciente 

relevancia en campos como la investigación clínica, la 

rehabilitación física, y la cultura física. En [Pinzón, 

2018], se desarrollaron bandas contenedoras de Unidades 

de Medición Inercial (IMUs) las cuales tuvieron la 

finalidad de reconstruir y clasificar movimientos 

normales y de tipo epilépticos a través de los registros de 

movimientos obtenidos de los sensores inerciales  

 

Estas bandas IMUs emergieron como una solución 

accesible y versátil para el registro de señales inerciales 

en entornos reales y sin restricciones físicas para el 

usuario; y aunque el enfoque inicial de estas fue hacia la 

epilepsia, gracias a su desarrollo se han ramificado 

nuevas líneas de investigación dentro del laboratorio, 
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como lo fueron su uso en estudios de polisomnografía, o 

en estudios de medición del equilibrio de los miembros 

inferiores. El trabajo, con el que se está trabajando en 

conjunto, y el cual dio pie a la elaboración del proyecto 

presente fue el del uso de dichas bandas para la detección 

de inicio de fatiga muscular durante el ejercicio de flexión 

de bíceps. 

 

 
Figura 1. Bandas contenedoras de IMUs. Fuente: [Pinzon, 2018] 

 

Las IMUs permiten al investigador obtener información 

detallada sobre actividades repetitivas como flexiones, 

extensiones o marcha. No obstante, el análisis manual de 

estas señales representa una tarea tediosa y propensa a 

errores, especialmente cuando se trabaja con grandes 

volúmenes de datos y no se posee un sistema apto para el 

manejo de estos. Por esta razón, se presentó la necesidad 

de desarrollar herramientas que permitan un análisis 

automatizado de las señales inerciales. En este caso en 

específico, se requirió de un software capaz de detectar 

eventos clave en la señal, siendo estos los máximos y 

mínimos locales, para así poder segmentar por flancos 

posteriormente la señal de interés. 

 

El presente trabajo describe el desarrollo de un sistema 

gráfico en LabVIEW que unifica tres módulos o paquetes 

de cómputo, siendo estos uno capaz del filtrado de valores 

atípicos, otro para la detección de máximos mediante el 

método AMPD y uno final que se encarga de la 

segmentación por flancos. Estos pueden ser utilizados 

dentro de una interfaz que permiten al usuario seleccionar 

y analizar secciones específicas de las señales inerciales. 

La implementación se diseñó para que pueda reutilizable 

en otras ramas de investigación relacionadas con el uso 

de las IMUs, y también que sea adaptable a distintas 

aplicaciones clínicas y deportivas. 

 

II. METODOLOGÍA 

A. Paquete de detección y filtrado de valores atípicos 
El primer paquete desarrollado tiene como objetivo 

mejorar la calidad de la señal inercial antes de la 

detección de eventos, mediante la identificación y 

corrección de valores atípicos que pudieran distorsionar 

el análisis. Para ello, se implementó un algoritmo basado 

en una ventana móvil bidireccional y en la desviación 

estándar local, el cual analiza cada punto de la señal en 

función de sus vecinos; se siguió la metodología 

propuesta en [Palshikar, 2009] y [Yu, 2014]. 

 

Dado un punto 𝑥𝑖 , se define una ventana 2𝑘 muestras 

centradas en 𝑖. Si la diferencia entre el punto y el 

promedio local excede un umbral basado en ℎ veces la 

desviación estándar local, es considerado un outlier y 

reemplazado por dicho promedio: 

 

|𝑥𝑖 −  𝜇𝑙𝑜𝑐𝑎𝑙| ≥ ℎ ∙  𝜎𝑙𝑜𝑐𝑎𝑙 

 
Ecuación 1. Precisión o valor predictivo positivo 

 

Este enfoque asume que los valores cercanos a un outlier 

conservan la distribución local de la señal, y permite 

corregir valores extremos sin afectar la morfología 

general. En este trabajo se utilizaron valores típicos de 

𝑘 = 35 y ℎ = 2.35, seleccionados tras pruebas 

empíricas. 

 

La implementación en LabVIEW se muestra en la figura 

2. 

 

 
Figura 2. Algoritmo de detección de valores atípicos en LabVIEW. 

Fuente: Autoría propia. 

 

B. Paquete de detección de máximos locales por método 

AMPD 

Entre los algoritmos propuestos en la literatura para la 

detección de picos en señales no lineales y ruidosas, 

destacan métodos como la búsqueda de máximos por 

vecindad, el uso de filtros de derivadas, transformadas de 

wavelet, umbrales adaptativos y algoritmos basados en 

características estadísticas. Sin embargo, muchos de estos 

métodos están enfocado en la detección de máximos de 

una señal en específico, o presentan limitaciones al 

enfrentarse a señal con alto contenido de ruido, como 

ocurre frecuentemente en registros inerciales. En este 

contexto, el algoritmo Automático de Detección de Picos 

basado en Múltiples Escalas (AMPD) propuesto en 

[Scholkmann, 2012] fue el considerado el más adecuado, 

ya que este permite detectar picos en señales ruidosas 
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periodoicas o quiasiperiodicas sin necesidad de preajustar 

parámetros de entrada. 

El funcionamiento del AMPD consta de cuatro estapas, 

mostradas en la figura 3: 

 

 
Figura 3. Etapas del algoritmo AMPD. Fuente: [Scholkmann, 2012]. 

 

Los pasos que lleva a cabo el algoritmo para cumplir 

con todas las etapas son los siguientes:  

• Eliminación de la tendencia lineal, o detrending, 

para evitar que la pendiente de la señal interfiera 

con la detección de picos, se ajusta y elimina una 

tendencia lineal mediante regresión. 

• Construcción del escalograma multiescala (LMS), 

refiriéndose a que se genera una matriz binaria M 

de tamaño N×L, donde N es la longitud de la señal 

y L el número de escalas. En cada fila k, se marca 

con un 0 si el punto es un máximo local respecto a 

una ventana de tamaño ±k 

• Estimación de la escala óptima, donde se calcula la 

suma por filas de la matriz M, y se elimina la 

tendencia lineal para estabilizar la curva. La escala 

óptima L* se define como el punto donde esta suma 

alcanza su mínimo 

• Reescalado del LMS, donde se seleccionan solo las 

primeras L* filas de la matriz, eliminando las 

escalas con bajo valor informativo. 

• Finalmente, se calcula la desviación estándar por 

columnas del LMS reescalado. Los índices con 

desviación estándar igual a cero en todas las escalas 

son considerados máximos locales verdaderos 

 

Las etapas del metodo AMPD se ejemplifican en la 

figura 4. 

 

 
Figura 4. Ejemplo de aplicación del algoritmo AMPD. Fuente: 

[Scholkmann, 2012]. 

El algoritmo fue traducido a partir de [Scholkmann, 

2016], e implementado completamente en el entorno 

gráfico de LabVIEW, véase figura 5. Se utilizó la 

versión extendida del algoritmo, que permite la 

detección de picos incluso en los extremos de la señal. 

 

 
Figura 5. Algoritmo AMPD en LabVIEW. Fuente: Autoría propia 

 

C. Paquete de segmentación por flacos 

Finalmente, se integró un tercer módulo que permite la 

segmentación automática de ciclos de movimiento a 

partir de la detección de flancos descendentes entre 

máximos y mínimos. Este se realizó considerando los 

casos en que se podrían colocar los cursores durante la 

selección de la sección de interés. Véase figura 6. 

 

 
Figura 6. Casos de selección de secciones de señal. Fuente: Autoría 

propia 

 

 

D. Validación de algoritmo AMPD y algoritmo de filtrado 

de valores atípicos 

El sistema fue validado utilizando señales inerciales 

previamente registradas durante ejercicios físicos 

repetitivos. Se emplearon anotaciones manuales como 

referencia para comparar los resultados del algoritmo de 

detección de picos. 

 

Se consideró una ventana de tolerancia de ±5 muestras 

(50 ms) para establecer correspondencia entre 

detecciones y eventos reales. A partir de esto, se 

calcularon las métricas de sensibilidad (Se) y precisión 

(PPV): 

 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100 

Ecuación 2. Sensibilidad 

 



 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

Ecuación 3. Precisión o valor predictivo positivo. 

 

Asimismo, se cuantificaron los errores de detección como 

False Positive Detection Errors (FPDEs) y False Negative 

Detection Errors (FNDEs). La validación se realizó tanto 

con cómo sin el filtro de valores atípicos, Esto para 

observar mejoras o en su caso diferencias en la precisión 

y reducción de errores al aplicar el preprocesamiento. 

 

III. RESULTADOS 

A. Validación de algoritmo AMPD y algoritmo de filtrado 

de valores atípicos 

 

En la Tabla 1 se presentan los resultados obtenidos tras 

aplicar el algoritmo AMPD sin preprocesamiento, 

utilizando una ventana de tolerancia de ±5 muestras. Se 

observa un desempeño general satisfactorio, con valores 

de sensibilidad (Se) y precisión (PPV) superiores al 96 % 

en el total de eventos, y un comportamiento ligeramente 

inferior en la detección de valles (93.75 %) respecto a los 

picos (98.95 %). 

 

Tabla 1. Validación AMPD. Fuente: Autoría Propia. 

 TP FPDE FNDE Se (%) PPV (%) 

Picos 190 2 2 98.95 98.95 

Valles 180 12 12 93.75 93.75 

Total 370 14 14 96.35 96.35 

 

La Tabla 2 muestra los resultados al aplicar el algoritmo 

AMPD posterior al filtrado de outliers. Se evidencian 

mejoras claras en la detección de picos, alcanzando una 

sensibilidad del 99.47 % y una precisión del 99.47 %, así 

como una reducción de los errores de detección (FPDE y 

FNDE). Sin embargo, se observa una disminución en el 

desempeño para la detección de valles. El rendimiento 

global del sistema con preprocesamiento se mantiene en 

niveles aceptables (Se = 93.75 %, PPV = 93.75 %). 

 

Tabla 2. Validación AMPD + Filtro de outliers. Fuente: Autoría 

Propia. 

 TP FPDE FNDE Se (%) PPV (%) 

Picos 191 1 1 99.47 99.47 

Valles 169 23 23 88.02 88.02 

Total 360 24 24 93.75 93.75 

 

B. Segmentación por flancos 

La Figura 7 presenta el resultado final del sistema, donde 

se visualiza la señal inercial junto con los segmentos 

identificados automáticamente mediante el análisis de 

flancos entre picos y valles detectados. Cada segmento 

representa en este caso el flanco de bajade del movimiento 

repetitivo, delimitado por eventos extremos.  

 

 
Figura 7. Señal inercial segmentada por flancos de bajada. Fuente: 

Autoría propia 

 

IV. DISCUSIÓN 
Los resultados obtenidos evidencian un desempeño 

adecuado del sistema propuesto para la detección de 

extrema y segmentación automática en señales inerciales. 

Es interesante destacar que se observó una disminución en 

las métricas de sensibilidad y precisión durante la 

detección de valles, tanto con cómo sin filtrado de outliers. 

Esta caída en el rendimiento puede atribuirse al ruido 

natural generado durante la ejecución del movimiento, 

particularmente en la fase de flexión del brazo, donde el 

sujeto realiza un mayor esfuerzo muscular. Dicha 

condición genera vibraciones de mayor amplitud, las 

cuales tienden a alterar la morfología del valle y dificultan 

su identificación precisa. 

 

Asimismo, se identificó que el filtro de outliers, si bien 

mejora la detección de picos al eliminar valores atípicos 

espurios, puede en ciertos casos eliminar también picos o 

valles que representan eventos reales del movimiento, 

especialmente en señales ruidosas. Esto sugiere la 

necesidad de un ajuste más dinámico de los parámetros del 

filtro, o implementar otro método de filtrado que tenga 

mejor desempeño. 

 

Como líneas de mejora, se propone: 

 

• Automatizar la selección de los parámetros del 

algoritmo de filtrado de valores atípicos, permitiendo 

adaptar el preprocesamiento a diferentes condiciones 

de señal. 

• Incrementar la robustez del algoritmo de 

segmentación, mejorando la detección de flancos en 

presencia de artefactos o movimientos no deseados. 
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• Incorporar nuevas funcionalidades al sistema, tales 

como el cálculo de métricas biomecánicas, 

visualización avanzada o análisis en frecuencia. 

• Optimizar la interfaz gráfica para mejorar la 

experiencia del usuario y facilitar la exploración de 

datos inerciales por parte de investigadores o 

terapeutas. 

 

En conjunto, estos hallazgos reafirman la utilidad del 

sistema como herramienta de análisis, a la vez que señalan 

oportunidades concretas para su evolución y refinamiento 

en futuros desarrollos. 

 

V. CONCLUSIONES 
Se desarrolló un sistema en LabVIEW capaz de realizar la 

segmentación y análisis automatizado de señales 

inerciales, integrando algoritmos de detección de valores 

atípicos, detección de picos basada en AMPD y 

segmentación por flancos. El sistema demostró un 

desempeño sólido en condiciones controladas, logrando 

altos niveles de sensibilidad y precisión en la detección de 

eventos relevantes del movimiento. Aunque cabe destacar 

que se identificaron limitaciones en la detección de 

extremos en presencia de ruido elevado. 

 

En conclusión, el proyecto sienta las bases para futuras 

ampliaciones y refinamientos para el funcionamiento del 

software, incluyendo la incorporación de nuevos módulos 

de análisis, la mejora de la robustez del sistema frente a 

artefactos, y el fortalecimiento de su capacidad de 

adaptación a distintas poblaciones o tipos de ejercicios. 
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