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Abstract. Diabetic retinopathy (DR) is a major cause of preventable visual im-

pairment on a global scale, especially among individuals with long-standing dia-

betes. Early detection and timely intervention are imperative to avert severe vi-

sion loss. This study explores the application of convolutional neural networks 

(CNNs) as a potential solution for the automated detection of early-stage diabetic 

retinopathy (DR) which are No_DR, Mild, Moderate, Severe, and Prolifera-

tive_DR [2]. A dataset comprising 3,500 fundus images of the eye, distributed 

uniformly across four clinical stages of DR, was preprocessed to standardize con-

trast and minimize noise. The study compared three CNN architectures Incep-

tionV3, Xception, and VGG16 which have been widely recognized in literature 

for their effectiveness in complex image classification tasks [2][3][4]. All models 

were fine-tuned by adding a dense classification layer and trained using an iden-

tical pipeline to ensure a fair comparison. The results indicate that InceptionV3 

obtained the best results with 92% in terms of validation accuracy and learning., 

with Xception and VGG16 ranking closely behind. All models demonstrated no-

table accuracy, underscoring the viability of implementing these architectures in 

clinical screening settings. This research underscores the significance of archi-

tectural design in CNN-based DR classification and contributes to the develop-

ment of automated diagnostic tools suitable for healthcare integration. 
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1 Introduction 

Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes melli-

tus that significantly contributes to visual impairment and blindness worldwide [1]. The 

condition is characterized by progressive damage to the retinal blood vessels, which 

progresses through four clinical stages to Mild (microaneurysms), Moderate (hemor-

rhages), Severe (extensive bleeding and venous changes), and Proliferative_DR (neo-

vascularization and fibrous growth) [2]. Early detection and accurate classification of 

DR are critical to preventing vision loss through timely interventions [3]. 

In recent years, convolutional neural networks (CNNs) have revolutionized the field 

of medical image analysis by learning hierarchical features directly from raw pixel data 

[4], thus eliminating the need for manual feature engineering. These models have 
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demonstrated remarkable performance across various medical imaging domains, in-

cluding ophthalmology [5]. Several studies have confirmed that CNN-based tools can 

reach diagnostic capabilities comparable to human experts in tasks such as DR classi-

fication [6]. 

Prominent CNN architectures such as VGG16 [7], InceptionV3 [8], and Xception 

[9] have been widely adopted due to their ability to generalize well in image classifica-

tion problems. These architectures differ in complexity and design: VGG16 relies on a 

simple and deep structure using 3×3 convolutional filters; InceptionV3 incorporates 

parallel multi-scale feature extractors to enhance spatial representation; and Xception 

improves upon Inception by replacing standard convolutions with depthwise separable 

convolutions for improved computational efficiency [10]. 

Previous research has demonstrated that transfer learning, where models are pre-

trained on large-scale datasets like ImageNet and later fine-tuned for specific tasks, 

enhances performance in limited-data settings [11][12]. Such strategies have proven 

particularly effective in DR detection tasks [13], enabling the development of systems 

with high diagnostic precision and generalizability. 

2 Methodology 

2.1 In Dataset and Preprocessing 

 

In this study, we employed the publicly available Kaggle dataset, containing 3,500 

color fundus images of the eye labeled by experts into four clinical stages: No_DR, 

Mild, Moderate, Severe, and Proliferative_DR, reflecting increasing severity levels [2–

4]. A balanced subset of 700 images per class was selected to mitigate class imbalance 

issues common in real-world DR datasets [5]. 

All images were resized to 224×224 pixels to meet the input dimensions of the eval-

uated CNN architectures (VGG16, InceptionV3, and Xception) and normalized to the 

[0, 1] range for numerical stability [6]. To enhance retinal feature visibility, we applied 

histogram equalization [7] and per-image standardization (zero-mean, unit-variance), 

reducing inter-image variability due to illumination and device differences [8]. The da-

taset was stratified into training (70%), validation (15%), and testing (15%) sets, pre-

serving class distribution across all subsets. 

2.2 Training Strategy 

 

Transfer learning was employed by initializing model parameters with pretrained 

ImageNet weights. The training consisted of two phases. Initially, base convolutional 

layers were frozen while newly added top layers were trained to capture task-specific 

features without altering learned visual representations. 

In the fine-tuning phase, selected deeper layers were unfrozen and retrained with a 

lower learning rate to adapt to the DR classification task. Specifically, 41 layers were 
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unfrozen in InceptionV3, 20 in Xception, and 2 in VGG16, based on prior studies indi-

cating that deeper models benefit from extensive retraining while simpler models risk 

overfitting [9]. This training workflow is illustrated in Figure 1, which outlines the 

complete pipeline from image input to class prediction, highlighting the pretrained lay-

ers, frozen blocks, and the newly added dense layers. 

 

 

Figure 1. Fine-tuning process of pretrained CNN architectures used for diabetic retinopathy clas-

sification. The diagram shows the progression from input preprocessing, through frozen base 

layers (InceptionV3), to added layers and final prediction output. Source: Own elaboration. 

Each model included a GlobalAveragePooling2D layer, a Dense layer (1024 units, 

ReLU), a Dropout layer (rate 0.45), and a final Dense output layer with softmax acti-

vation for classification. Models were optimized with Adam (learning rate = 0.0001) 

and trained using categorical cross-entropy loss. 

3 Results 

3.1 Quantitative Evaluation 

 

Classification performance was assessed using standard metrics: accuracy, precision, 

recall, and F1-score. These are commonly used in medical imaging as they reflect over-

all performance and class-specific diagnostic reliability. Accuracy measures overall 

correctness, while precision and recall reveal class-wise prediction behavior. The F1-

score balances both, crucial in medical settings where misclassifications have clinical 

consequences. 

As depicted in Figure 2, InceptionV3 outperformed other models, reaching 94% 

accuracy, 92% precision, 96% recall, and a 93% F1-score. Xception followed closely 

with 93% accuracy and a balanced F1-score of 90%. In contrast, VGG16 showed 

weaker results, with only 56% accuracy, indicating limited ability to distinguish be-

tween DR severity levels. 
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Figure 2. Comparison of global performance metrics for InceptionV3, Xception, and VGG16 in 

terms of accuracy, precision, recall, and F1-score. Source: Authors’ own elaboration. 

3.2 Confusion Matrix Analysis  

 

To complement global performance metrics, Figure 2 illustrates the number of correct 

predictions per class for each model. These predictions are based on confusion matrix 

analysis across the four DR stages. 

InceptionV3 demonstrated the most consistent results, with 100% recall in Mild 

(76/76) and Moderate (54/54), and strong performance in Proliferate_DR (186/214, 

87%) and Severe (177/179, 99%). A decline was only observed in No_DR, with a 94% 

recall rate (31/33). Xception demonstrated a commendable performance, attaining 93% 

recall in Severe (178/191) and 92% in Proliferate_DR (181/196). The mild and moder-

ate groups demonstrated a 96% (80/83) and 91% (43/47) recall rate, respectively. In 

contrast, the no-drink recall rate was 87% (34/39), indicating a moderately higher level 

of consistency, though with slightly lower precision. VGG16 demonstrated a decline in 

accuracy across the majority of the classes. The proportion of mild recall cases was 

75% (87/116), while moderate recall (43/111, 39%) and no-DR (36/102, 35%) exhib-

ited a significant decrease. Proliferate_DR and Severe achieved 63% (72/115) and 68% 

(76/112), respectively, suggesting challenges in capturing fine-grained features. 

InceptionV3 demonstrated superior performance in comparison to both the Xception 

and VGG16 models. This finding serves to reinforce the notion that a deeper architec-

ture and advanced feature extraction are of paramount importance in the context of 

medical image classification. 
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Figure 2. Correct predictions per class for each model. From top left: InceptionV3, top right: 

Xception, bottom: VGG16. This multipanel chart highlights model performance class-wise 

across all DR stages. Source: Own elaboration. 

4 Discussion 

 

The evaluation of InceptionV3, Xception, and VGG16 highlighted the significance of 

architectural design in the classification of diabetic retinopathy (DR). InceptionV3 

demonstrated the most optimal performance, with 94% accuracy, 92% precision, 96% 

recall, and 93% F1-score, thereby surpassing the 89% accuracy reported by Szegedy et 

al. [3] and outperforming the 87.4% sensitivity and 90.3% specificity from Gulshan et 

al. [4]. 

Xception demonstrated a 93% accuracy rate and an F1-score of 90%, which is con-

sistent with the findings of prior studies that reported accuracy rates ranging from 85% 

to 91%, contingent on the dataset and lesion type [14]. The efficacy of the model is 

further substantiated by its exceptional performance in the Proliferate_DR and Severe 

categories, attaining 100% accuracy. This outcome serves to reinforce its adeptness in 

fine-grained classification. 

VGG16 demonstrated suboptimal performance, with an overall accuracy of 56%, 

particularly in the Moderate (39%) and No_DR (35%) stages. This falls below the 73–

80% range reported in previous VGG-based DR studies [2][12]. This phenomenon is 
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likely attributable to the system's shallow architecture and the absence of advanced fea-

ture extraction modules, as previously discussed by Litjens et al. [13]. 

The disparities in performance further underscored the intricacies of the fine-tuning 

process. InceptionV3 (41 layers) and Xception (20) demonstrated superior adaptability 

to DR features, while VGG16 (2 layers) exhibited limited specialization, consistent 

with the observations reported by Tajbakhsh et al. [5] that shallow fine-tuning can result 

in underfitting in complex datasets. 

5 Conclusion 

 

This study evaluated the performance of three convolutional neural network architec-

tures InceptionV3, Xception, and VGG16for the classification of diabetic retinopathy 

stages using a balanced image dataset. Among them, InceptionV3 achieved the highest 

accuracy and generalization ability, closely followed by Xception. VGG16 showed lim-

itations in performance, highlighting the relevance of architecture selection in medical 

image analysis. 

The results suggest that deep CNNs with more advanced feature extraction mecha-

nisms are highly suitable for assisting in the early detection of diabetic retinopathy. 

Furthermore, performance can be improved by fine-tuning deeper layers, as demon-

strated by the gradual increase in accuracy when selectively unfreezing the final layers 

in each architecture. 

Future research will focus on increasing the dataset size, evaluating ensemble ap-

proaches, and integrating clinical patient data to improve classification precision. Ulti-

mately, the integration of these AI models into real-world clinical screening tools could 

significantly enhance early diagnosis and treatment planning for diabetic retinopathy. 
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