UNIVERSIDAD
MODELO

Escuela de Ingenieria

Ingenieria Biomédica
Ciclo escolar 2023 - 2024
Octavo semestre
Grupo A

Robdtica biomédica
Realidad Virtual: Avatar.

Nombre del alumno:

Hernandez Ocon Luz Andrea

13 de mayo del 2024

1. INTRODUCCION

Los avatares controlados por Unidades de Medicién Inercial (IMU) representan un avance
significativo en la realidad virtual. Estos avatares, también conocidos como avatares de cuerpo
completo, son representaciones digitales de usuarios que pueden replicar con precision los
movimientos y gestos del cuerpo humano en entornos virtuales. La tecnologia IMU permite
el seguimiento en tiempo real de la orientacion y posicion del cuerpo a través de una

combinacién de acelerdmetros, giroscopios y magnetémetros.

Los sensores IMU estan integrados en un traje o dispositivo portatil que el usuario lleva
consigo, permitiendo capturar los movimientos del cuerpo en tres dimensiones. Esta
informacion se transmite a un sistema informatico que procesa los datos y los aplica al avatar
virtual, generando una representacion en tiempo real de los movimientos del usuario en el

mundo virtual.

La principal ventaja de los avatares controlados por IMU es su capacidad para ofrecer una
experiencia de interaccion natural y fluida en entornos virtuales. Los usuarios pueden
moverse libremente y realizar gestos con el cuerpo de manera intuitiva, lo que aumenta la
inmersion y la sensacion de presencia en el mundo virtual. Esto los hace ideales para
aplicaciones de realidad virtual, donde la interaccion fisica es esencial para una experiencia

envolvente.

Las aplicaciones de los avatares controlados por IMU son diversas y van desde el
entretenimiento hasta la medicina y la industria. En el ambito del entretenimiento, estos
avatares se utilizan en videojuegos y experiencias de realidad virtual para permitir a los
jugadores interactuar con el entorno y otros personajes de manera mas realista. En la
medicina, se emplean en la rehabilitacion fisica para ayudar a los pacientes a recuperar la

movilidad y la funcion motora.

2. OBJETIVO
Recrear un modelo virtual humanoide AVATAR incluyendo sensor de Aceleracion y
potencidmetros en articulaciones conectadas a un modelo real. EI modelo virtual replica el
modelo Real.
3. MARCO TEORICO
3.1 Unidad de Medicion Inercial
IMU, que significa Unidad de Medicidn Inercial, es un dispositivo electrénico que
mide e informa de la aceleracidn, la orientacion, las velocidades angulares y otras
fuerzas gravitatorias. Se compone de 3 acelerometros, 3 giroscopios y 3
magnetometros. Uno por eje para cada uno de los tres ejes del vehiculo: yaw, pitchy

roll.

acel girdscopo

4 Unidad de medicién
inercial

X

Imagen 1. Ejes del IMU

Dependiendo de la categoria del sensor IMU, las principales aplicaciones incluyen
control y estabilizacion, navegacion y correccién, o medicion y pruebas. Sin
embargo, los mercados tipicos de las unidades de medicidn son el control de sistemas
no tripulados, las aplicaciones cartograficas mdviles ya sean terrestres, aéreas o

maritimas y toda carga Util que requiera estabilizacion o apuntamiento.

3.2 Realidad virtual
La realidad virtual se podria definir como un sistema informatico que genera en

tiempo real representaciones de la realidad, que de hecho no son méas que ilusiones

ya que se trata de una realidad perceptiva sin ninguin soporte fisico y que Unicamente
se da en el interior de los ordenadores.

La simulacion que hace la realidad virtual se puede referir a escenas virtuales, creando
un mundo virtual que sélo existe en el ordenador de lugares u objetos que existen en
la realidad. También permite capturar la voluntad implicita del usuario en sus
movimientos naturales proyectandolos en el mundo virtual que estamos generando,

proyectando en el mundo virtual movimientos reales.

Las aplicaciones que en la actualidad encontramos de la realidad virtual a actividades
de la vida cotidiana son muchas y diversas. Hay que destacar: la medicina, la

simulacion de multitudes y la sensacidn de presencia.

La aplicacion en la medicina la encontramos en la simulacion virtual del cuerpo
humano. A partir de imagenes de nuestro cuerpo, se puede hacer la recreacion en 3D
del paciente, cosa que facilita la elaboracion de un diagnostico, o la simulacién de

operaciones en caso que sea necesario.

3.3 Avatar de realidad virtual

Un avatar con integracion en realidad aumentada (AR), es una representacion digital
de un usuario o un personaje que logramos superponer en el mundo real a través de
la tecnologia de web AR. Se trata de una entidad virtual que interact(a con el entorno
fisico y el entorno del usuario en tiempo real. Los avatares se crean utilizando
imagenes generadas por computacion y estan disefiados para integrarse en diferentes
entornos, como plataformas de videojuegos, ecosistemas VR o el propio AR que lo
incorpora a escenarios reales del usuario, mejorando la sensacion de inmersion e

interaccion.

La tecnologia web AR ha surgido como una de las tecnologias més transformadoras
y Utiles porque nos permite unir el entorno fisico y el digital de forma mas réapida y
accesible.

En este sentido encontramos un punto de unidn fascinante con el uso de avatares a
través de AR, que abre nuevas posibilidades en diversos campos de aplicacion

e Garantizando accesibilidad al usuario comun hacia nuevos formatos y

contenidos digitales

Los avatares sirven como un puente que conecta a los usuarios con los entornos
virtuales. Cuando creamos estas representaciones digitales permitimos que los
usuarios puedan interactuar de manera mas natural con objetos y personajes
digitalizados, fomentando una sensacion de inmersion cercana y organica. Los
avatares se pueden personalizar para que se parezcan a los propios usuarios, creando
una experiencia mas personal y amigable que permite conectar mejor con el usuario

final.

e Mejora de la Comunicacion y la Interaccion con el usuario
En experiencias web AR podemos confirmar que los avatares desempefian un papel
crucial si queremos enriquecer la comunicacion con los usuarios. Los avatares nos
ofrecen multiples posibilidades a la hora expresar emociones y sefiales no verbales o

movimientos.

4. DESARROLLO
Se ha desarrollado un avatar virtual creado en VRealm Builder con articulaciones para
facilitar su movimiento. El avatar cuenta con un sistema de padre-hijo, donde el torso es el

padre de los brazos y las piernas.

Imagen 2. Avatar de VRealm Builder
Este avatar es controlado a través de una mufieca articulada equipada con un Unidad de
Medicion Inercial (WT901C-TTL) colocada en el torso, y dos potenciémetros ubicados en
los brazos. Para poder controlar los potenciémetros con los brazos, se colocaron perillas mini

para potenciémetros en los hombros de la mufieca.

Imagen 3. IMU WT901C-TTL

Imagen 4. Mufieca con perillas para potenciometros

El IMU registra la orientacion y posicién del torso, mientras que los potenciémetros capturan
los angulos de los brazos. Estos datos son recopilados por un cédigo en Matlab, el cual
procesa la informacion proveniente de los sensores para generar los movimientos

correspondientes del avatar en el entorno virtual.

Imagen 5. Avatar funcionando con los movimientos de la mufieca

A través del cddigo de Matlab, es posible visualizar en tiempo real los movimientos del

avatar, lo que facilita el analisis y la evaluacion de su comportamiento.

Finalmente, se realiz6 un disefio de caja para la estructura de la mufieca y los potenciémetros
en FUSION 360.

Imagen 6. Estructura para la mufieca y potenciometros

5. RESULTADOS
Se obtuvo un avatar funcional que realiza los movimientos de flexion y extension de la
cadera. Igualmente, la flexion y extension de ambos brazos siguiendo los movimientos

realizados por la mufieca.

Imagen 7. Avatar en funcionamiento

Finalmente, se obtuvo el codigo en Matlab, el cual se encarga de obtener los angulos de los

potenciometros y de la IMU.

#include "REG.h"

#include "wit_c_sdk.h"

const int pots[] = {A0, A1},

/*

Test on MEGA 2560. use WT901CTTL sensor

WT901CTTL MEGA 2560
VCC <---> 5V/3.3V
TX <---> 19(TX1)
RX <---> 18(RX1)

GND <---> GND
*/
#define ACC_UPDATE 0x01
#define GYRO_UPDATE 0x02
#define ANGLE_UPDATE 0x04
#define MAG_UPDATE 0x08
#define READ_UPDATE 0x80

static volatile char s_cDataUpdate = 0, s_cCmd = Oxff;

static void CmdProcess(void);

static void AutoScanSensor(void);

static void SensorUartSend(uint8_t *p_data, uint32_t uiSize);

static void SensorDataUpdata(uint32_t uiReg, uint32_t uiRegNum);

static void Delayms(uint16_t ucMs);

const uint32_t c_uiBaud[8] = {0,4800, 9600, 19200, 38400, 57600, 115200, 230400},
float giros[2] = {0};

float grados[2] = {0};

void setup() {
/I put your setup code here, to run once:
Serial.begin(115200);
Witlnit(WIT_PROTOCOL_NORMAL, 0x50);
WitSerialWriteRegister(SensorUartSend);
WitRegisterCallBack(SensorDataUpdata);
WitDelayMsRegister(Delayms);
[[Serial.print("\r\n******** \jt-motion normal example ********\r\n");
AutoScanSensor();
b
inti;
float fAcc[3], fGyro[3], fAngle[3];
void loop() {
while (Seriall.available())

WitSerialDataln(Seriall.read());
while (Serial.available())
CopeCmdData(Serial.read());

CmdProcess();
if(s_cDataUpdate)
{

for(i=0;i<3;i++)

fAccli] = sReg[AX+i] / 32768.0f * 16.0f;
fGyro[i] = sReg[GX+i] / 32768.0f * 2000.0f;
fAngle[i] = sReg[Roll+i] / 32768.0f * 180.0f;

}
if(s_cDataUpdate & ANGLE_UPDATE)

Serial.print(fAngle[0]);

Serial.print(',");
Serial.print(fAngle[1]);

Serial.print(',");
[[Serial.print(fAngle[2]);

/I Serial.print(',");

delay(100);

s_cDataUpdate &= ~ANGLE_UPDATE;

}
s_cDataUpdate = 0;
}

for(inti=0;i<2;i++){
giros[i] = analogRead(pots[i]) * 100.0 / 1023.0;
grados[i] = map(giros[i], 0, 100, 0, 290);

}

Serial.print(grados[0]);
Serial.print(',");
Serial.print(grados[1]);
Serial.printin();
delay(100);

void CopeCmdData(unsigned char ucData)
{

static unsigned char s_ucData[50], s_ucRxCnt = 0;

s_ucData[s_ucRxCnt++] = ucData;
if(s_ucRxCnt<3)return;

//Less than three data returned
if(s_ucRxCnt >= 50) s_ucRxCnt = 0;
if(s_ucRxCnt >= 3)

if((s_ucData[1] == "\r') && (s_ucData[2] == '\n"))
{

s_cCmd =s_ucData[0];
memset(s_ucData,0,50);

S_UCRxCnt=0;

}

else

{
s_ucData[0] = s_ucData[1];
s_ucData[1] = s_ucData[2];
Ss_UcRxCnt = 2;

}

}

static void CmdProcess(void)
switch(s_cCmd)

case 'a: if(WitStartAccCali() != WIT_HAL_OK) Serial.print("\r\nSet AccCali Error\r\n");

case 'm" :::‘r(?/é\llli(t’StartMagCali() 1= WIT_HAL_OK) Serial.print("\r\nSet MagCali Error\r\n");

case 'e": ?fr((\elz\illi(t’StopMagCali() 1= WIT_HAL_OK) Serial.print("\r\nSet MagCali Error\r\n");

case 'u" :)flgl?lli(t’SetBandwidth(BANDWIDTH_5HZ) 1= WIT_HAL_OK) Serial.print("\r\nSet Bandwidth Error\r\n");
case 'U" ?fr(?/a\llli(t’SetBandwidth(BANDWIDTH_256HZ) 1= WIT_HAL_OK) Serial.print(*\\nSet Bandwidth Error\r\n");
case 'B" ?fr((\el?lli(t’SetUartBaud(WlT_BAU D_115200) != WIT_HAL_OK) Serial.print("\r\nSet Baud Error\r\n");

else

Seriall.begin(c_uiBaud[WIT_BAUD_115200]);
/ISerial.print(" 115200 Baud rate modified successfully\r\n");

}
break;
case b if(WitSetUartBaud(WIT_BAUD_9600) != WIT_HAL_OK) Serial.print("\r\nSet Baud Error\r\n");
else

{
Seriall.begin(c_uiBaud[WIT_BAUD_9600]);
Serial.print(" 9600 Baud rate modified successfully\ri\n™);

break;

case 'r': if(WitSetOutputRate(RRATE_1HZ) 1= WIT_HAL_OK) Serial.print("\r\nSet Baud Error\r\n");

else //Serial.print(*\r\nSet Baud Success\r\n");

break;

case 'R": if(WitSetOutputRate(RRATE_10HZ) I= WIT_HAL_OK) Serial.print("\r\nSet Baud Error\r\n");

else Serial.print("\r\nSet Baud Success\r\n");
break;
case 'C" if(WitSetContent(RSW_ACC|RSW_GYRO|RSW_ANGLE|RSW_MAG) != WIT_HAL_OK) Serial.print("\\nSet RSW
Error\rin*);

break;
case 'c": if(WitSetContent(RSW_ACC) != WIT_HAL_OK) Serial.print("\r\nSet RSW Error\r\n");
break;
case 'h: ShowHelp();

break;
default :break;

}
s_cCmd = 0xff;
}
static void SensorUartSend(uint8_t *p_data, uint32_t uiSize)

Seriall.write(p_data, uiSize);
Seriall.flush();

static void Delayms(uint16_t ucMs)

{
delay(ucMs);

static void SensorDataUpdata(uint32_t uiReg, uint32_t uiRegNum)

{
inti;
for(i = 0; i < uiRegNum; i++)

switch(uiReg)
{

case AZ:

s_cDataUpdate |= ACC_UPDATE;
break;
case GZ:

s_cDataUpdate |= GYRO_UPDATE;
break;
case HZ:

s_cDataUpdate |= MAG_UPDATE;
break;
case Yaw:

s_cDataUpdate |= ANGLE_UPDATE;
break;
default:

s_cDataUpdate |= READ_UPDATE;

break;

UiReg++;
}
}

static void AutoScanSensor(void)

{
int i, iRetry;

for(i = 0; i < sizeof(c_uiBaud)/sizeof(c_uiBaud[0]); i++)

Seriall.begin(c_uiBaud[i]);
Seriall.flush();

iRetry = 2;

s_cDataUpdate = 0;

do

{
WitReadReg(AX, 3);
delay(200);

while (Seriall.available())

WitSerialDataln(Seriall.read());

}
if(s_cDataUpdate != 0)

//Serial.print(c_uiBaud[i]);
[/Serial.print(" baud find sensor\in\r\n"');
ShowHelp();
return ;
¥
iRetry--;
Jwhile(iRetry);

Serial.print(“"can not find sensor\r\n");
Serial.print("please check your connection\r\n");

Y el codigo de Arduino que se encarga de la conexion serial y de la obtencion de los datos

cle

if ~isempty(instrfind)
fclose(instrfind);
delete(instrfind);

end

numDatos = 1000;

PuertoSerial = 'COM9";

% Access the 3D World from MATLAB
world = vrworld('Monita.wrl', 'new');
open(world);

fig = vrfigure(world);

% Access the nodes in the avatar
%set(fig, 'Viewpoint', 'Far View');

rl = vrnode(world, 'X");

r2 = vrnode(world, 'Y");

r3 = vrnode(world, 'Hombro_derecho');
r4 = vrnode(world, 'Hombro_izquierdo');

i=1,

s = serial(PuertoSerial);
set(s, '‘BaudRate’, 115200);

fopen(s);
disp('Presiona enter para continuar');
pause(); % pausa y espera a que el usuario presione cualquier tecla

while (i < numDatos)
datos = fscanf(s, '%f,%f,%f,%f\n’); % espera una cadena de caracteres que comience con el caracter '$'y tenga 3 datos float

angulol = datos(1); % angulos recibidos desde Arduino para el primer node

angulo2 = datos(2);

angulo3 = datos(3); % angulos recibidos desde Arduino para el primer node

angulo4 = datos(4);

angulorl = ((angulo1*2*pi)/180) % angulos recibidos desde Arduino para el primer node
angulor2 = ((angulo2*2*pi)/180)

angulor3 = ((angulo3*2*pi)/180) % angulos recibidos desde Arduino para el primer node

angulor4 = ((angulo4*2*pi)/180)
% Aplica rotacion a los nodos r1, r2, r3

if angulor1>0.6
angulorl = 0.6;
elseif angulorl<-0.6
angulorl = -0.6;
elseif angulor2>1
angulor2 = 1;
elseif angulor2<-1
angulor2 = -1;
else

angulorl=angulorl;
angulor2=angulor2;
end

rl.rotation = [0 0 1 angulorl];
r2.rotation = [1 0 0 angulor2];
r3.rotation = [1 0 0 angulor3];
r4.rotation = [1 0 0 angulor4];

% Update the figure
vrdrawnow;

i=i+1; %aumenta el bucle
end
fclose(s); % cierra la conexion

delete(s);
clears;

6. CONCLUSIONES

En conclusion, la practica demuestra la posibilidad de utilizar tecnologias de sensores como
IMU y potenciémetros para controlar avatares virtuales en entornos como VRealm Builder.
La integracion de estos dispositivos permite una mejor interaccion con el avatar, ya que los

movimientos del usuario se reflejan con precision en el mundo virtual.

Ademas, el uso de Matlab como softaware de visualizacion proporciona una herramienta
facil de usar para procesar los datos de los sensores y visualizar los movimientos del avatar

en tiempo real.

7. REFERENCIAS
SBG Systems. (2023). IMU - Unidad de medicién inercial. Recuperado de: https://www.shg-
systems.com/es/unidad-de-medicion-inercial-sensor-
imu/#:~:text=IMU%2C%20que%?20significa%20Unidad%20de,necesidades%20de%20cab
0%20%2C%203%20magnet%C3%B3metros.

Facultat d'Informatica de Barcelona (s.f.) Realidad virtual. Recuperado de:

https://www.fib.upc.edu/retro-informatica/avui/realitatvirtual.html

Onirix (2023) Avatares en realidad aumentada, que aplicaciones tiene y como podemos
crearlos. Recuperado de: https://www.onirix.com/es/avatares-en-realidad-aumentada-que-

aplicaciones-tiene-y-como-podemos-crearlos/

