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Abstract. The detection of kidney stones on computed tomography (CT) scans
is crucial for preventing renal complications and facilitating timely treatment.
However, traditional methods require extensive manual intervention, which can
be laborious and error-prone. The growing use of artificial intelligence and deep
learning techniques offers new ways to automate and enhance these diagnostic
processes. In this context, the present study proposes an automated system that
integrates: (1) a MobileNetV2 classifier with a high accuracy in slice orienta-
tion (axial/coronal) identification; (2) a YOLOv8n detector localizing kidneys
with >95% accuracy; (3) adaptive stone segmentation via histogram threshold-
ing. We use a public dataset comprising 2,757 abdominal CT images, including
both kidney stone and non-stone cases. Due to the dataset's heterogeneity, in-
cluding slices in axial/coronal planes, a MobileNetV2-based classifier was im-
plemented to automatically distinguish between these two, facilitating image
classification. YOLOVS is then employed for localising the kidneys, enabling
the renal anatomy to be segmented efficiently and automatically. Evaluation on
test set showed that the system achieves 100% sensitivity, successfully detect-
ing all true positive. However, the specificity reflects a higher rate of false pos-
itives, with a classification accuracy of 75.76% and an F1-Score of 84%. Real-
time processing was achieved, with an average inference time of <1.5s per im-
age. These results suggest that the proposed method could be integrated into
clinical settings to accelerate and improve diagnostic accuracy. However, ad-
justments are still required to reduce false positives and validate the system on
larger, more diverse datasets.
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1 Introduction

1.1 A Subsection Sample

Kidney stones (renal calculi) represent a pervasive and increasing global health burden.
In the year 2019 alone, 115 million cases occurred worldwide with a prevalence rate
ranging from 1% to 20%; it is estimated that 1 in 10 people in the United States has
been affected by this disease [1]. These crystalline deposits form in the urinary tract,



often causing excruciating pain, urinary obstruction, and potential renal damage when
left undiagnosed [2]. The clinical relevance for rapid and accurate detection stems from
three critical factors: the need to prevent irreversible kidney injury, the necessity to
guide appropriate surgical or medical interventions, and the substantial economic costs
of emergency department visits for acute stone episodes — estimated at $5 billion annu-
ally in the United States alone [3].

In modern practice, hon-contrast computed tomography (NCCT) is the undisputed
gold standard for stone detection, offering unparalleled sensitivity in identifying calci-
fications [4]. This imaging modality surpasses traditional radiography and ultrasonog-
raphy by reliably visualizing radiolucent stones and detecting secondary signs of ob-
struction such as perinephric stranding or hydronephrosis [5]. This diagnostic superior-
ity comes with challenges: the deluge of imaging data in busy clinical settings often
leads to radiologist fatigue, introducing concerning rates of missed diagnoses — partic-
ularly for smaller calculi — while interobserver variability remains problematic even
among experienced specialists [6].

In this context, the automatic medical image analysis systems, driven by computer
vision and deep learning techniques has emerged as a promising solution to improve
efficiency and accuracy in computer-aided medical diagnosis (CAD) [7]. Particularly,
the Convolutional Neural Networks (CNN’s), has revolutionized the field through the
capability of autonomously learning discriminative features across diverse imaging
conditions [8].

Therefore, this work proposes a fully automated end-to-end pipeline that integrates
three critical stages: (1) classification of the anatomical imaging plane, (2) precise lo-
calization of the kidneys, and (3) segmentation and quantification of renal calculi. This
sequential integration mirrors the typical radiological diagnostic workflow while re-
ducing the need for manual intervention or pre-processing [9]. This end-to-end pipeline
harnesses two key architectures: the MobileNetV2, which is used for the effective and
efficient slice plane classification, and the YOLOVS8, which is used for the kidney lo-
calization.

2 Methodology

2.1  Dataset and Preprocessing

The development of this work begins with the use of the publicly available Kaggle’s
“CT KIDNEY DATASET: Normal-Cyst-Tumor and Stone” dataset, containing 12,446
anonymous CT across four diagnostic categories. In order to focus on kidney stone
detection, cysts (n=3,709) and tumor (n=2,283) cases were excluded, as these represent
distinct pathological entities with different imaging characteristics.



This yielded two relevant categories: Normal renal anatomy (n=5,077) and con-
firmed kidney stone cases (n=1,377). To address potential class imbalance [10], a strat-
ified sampling approach was implemented. Additionally 15 images were identified as
oblique planes through manual inspection and consequently excluded, resulting in a
final balanced dataset of 1,362 normal cases to match the number of cases in the stone
category.

A significant preprocessing challenge arose from the mixture of Axial and Coronal
imaging planes within the dataset. This heterogeneity required the development of an
automated classification system to distinguish between these two slice orientations. To
address this, a transfer learning classifier based on MobileNetV2 was implemented to
identify slice orientation and automate the dataset reorganization.

2.2 Architectures: MobileNetV2 and YOLOv8n

The selection of neural network architectures was based by considering clinical com-
putational efficiency and task complexity. This section outlines the technical rationale
behind selecting MobileNetV2 for plane classification and YOLOv8n for renal locali-
zation. Overall, the choice of MobileNetV2 and YOLOv8n responds to a strategy fo-
cused on maximizing the efficiency and portability of the system, while maintaining
levels of accuracy suitable for application in an automated clinical environment [11].

To classify the type of CT slice, we implemented a convolutional neural network
(CNN) based on the MobileNetV2 architecture, a lightweight CNN optimized for use
on mobile or hardware-constrained devices. Its use of inverted residuals and depth wise
separable convolutions reduce the number of parameters and operations while preserv-
ing accuracy.

Heavier alternatives, such as ResNet50, InceptionV3 and EfficientNet, were consid-
ered but discarded due to their higher computational demand and longer training times.
These features are less desirable in this context without a substantial improvement in
accuracy for this binary task [12].

For kidney localization, YOLOVS8N, a real-time object detection architecture, was
used for its minimal computational demand and suitability for low-resource settings
[13]. Larger variants such as YOLOv8m or YOLOv8I were discarded, due to higher
resource consumption, and alternative architectures such as Faster R-CNN or SSD im-
ply higher latency and complexity in implementation [14]. The selected YOLO variant,
version 8 model nano, is the lightest of the YOLOV8 family, designed to operate in low
computational consumption environment, which aligns with the project objectives.

2.3 MobileNetV2-based Classifier Training

We implemented MobileNetV2 with pre-trained weights from ImageNet, retaining
only its feature extraction backbone while removing the original classification layers.



To leverage transfer learning, we froze the base model weights, preserving its low- and
mid-level features. This feature extractor was integrated into a custom sequential model
to which we added a GlobalAveragePooling2D layer following the base model to re-
duce the spatial dimensions of the feature maps. Then, a dropout layer (0.2 rate) was
included to introduce regularization to make the model learn more robust features [15].

The final layer was a single dense neuron with a sigmoid activation function, suitable
for a binary classification (Axial versus Coronal). The model used the Adam optimizer,
chosen for its adaptive learning capabilities, and the binary cross-entropy loss function,
the standard for binary classification tasks [16]. The model contained approximately
2.26M, however, only 1,281 (exclusively to the classification head) of these were
trained.

2.4 YOLOvV8n-based Kidney Detector Training

The YOLOv8n model, with 72 layers and approximately 3M parameters, was initial-
ized using pre-trained weights from the COCO dataset using Ultralytics default pipe-
line. Although no layers were explicitly frozen during training, the architecture inher-
ently leveraged transfer learning by adapting its general-purpose object detection back-
bone to the specialized task of kidney localization in medical CT slices.

The model was trained using 780 annotated CT slices with at least one kidney in-
stance, and 221 additional slices for validation. The only preprocessing applied was
built-in resizing to 640x640px [17], with no external augmentation techniques.

Training was set for 50 epochs, with early stopping after 10 epochs. The training
ended at epoch 31, when validation metrics plateaued, completing in 17 minutes and
24 seconds with a batch size of 16 using Google Colab's GPU. This setup achieved a
mean Average Precision (mAPso) of 0.992 on the validation set. On a separate test set
(200 CT slices), the model demonstrated perfect recall by identifying all kidney in-
stances while maintaining precise anatomical localization.

2.5  Stone Detection Algorithm

Following the localization of the kidney using the corresponding YOLOv8n model, the
next step involved the extraction of the region of interest (ROI) to identify renal calculi.
The bounding box generated by YOLOv8n was used to crop the kidney area from the
original CT image. To minimize inclusion of adjacent structures, a fixed 10px margin
was removed from each side of the bounding box before further processing.

The resulting ROI was converted to grayscale, facilitating processing with OpenCV.
An adaptive thresholding strategy is implemented to isolate hyperdense regions indic-
ative of stones. Specifically, we computed the pixel intensity mean and standard devi-
ation within the grayscale ROI and defined a dynamic threshold as follows:

M+ 20 x o= umbral Q)



Where [ is the mean intensity, o is the standard deviation, and « is a scaling factor
adjusted to enhance the sensitivity of the detection The scaling factor of 1.2 enhance
sensitivity to regions with significantly higher intensity.

Pixels above this computed threshold were binarized using a hard threshold opera-
tion, effectively highlighting regions with significantly higher intensity values—char-
acteristic of calcifications or stones in CT imaging [18].

Post-thresholding, connected components were analyzed to count the number of in-
dividual stones, and their corresponding contours were overlaid CT image previously
processed for visualization. This approach, proved effective for segmenting and quan-
tifying stones within the kidney ROI

3 Results

3.1  Quantitative Evaluation of MobileNetV2 and YOLOv8n
Architectures

The models demonstrated near-ideal learning trajectories during training [19] (see
Fig. 1). The MobileNetV2 achieved perfect convergence by the second epoch, reaching
100% training accuracy (loss=0.0014) while maintaining optimal validation perfor-
mance that persisted through subsequent epoch.
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Fig. 1. Training and validation performance curves for the models. (a) MobileNet\VV2 Accuracy
and loss plots; (b) YOLOV8N detector training metrics for kidney localization in Axial CT. (c)
YOLOv8n detector training metrics for kidney localization in Coronal CT.

For the YOLOv8n detectors, the Axial-plane model demonstrated a marginally
higher recall but slightly lower precision compared to the Coronal-plane variant. This
reflects an accuracy gap of 0.5% in their respective test sets. Both YOLO models
achieved balanced F1-scores (Axial=97.7, Coronal=97.44), with error rates below 5%.
This indicates robust generalization, despite the inherently higher anatomical variabil-
ity of the axial plane.

Table 1. Comparative performance metrics across models on the test set.

Model Precision Recall Accuracy F1-Score Error

(%) (%) (%) (%) (%)
MobileNetV2 100 100 100 100 0
YOLOvS8n (Axial) 96.95 98.45 95.5 97.7 4.5
YOLO\:;B (Coro- 99 48 95.48 95.0 97.44 5

3.2 Quantitative Performance of the End-to-End Stone Detection
Framework

The integrated pipeline demonstrated robust performance when evaluated on unseen
CT images (see Fig. 2), achieving a perfect recall while maintaining a precision of
75.76%. This resulted in an overall accuracy of 84% for stone detection, with an error
rate of 16%. The framework maintained this performance across both anatomical planes
with no significant difference in detection rates between them.

The system showed particular strength in identifying true positive cases, as evi-
denced by the complete recall score, though some false positives were observed. The
end-to-end processing time averaged under 1.35 seconds per image on standard GPU
hardware, demonstrating clinical applicability.
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Fig. 2. Performance Metrics of the End-to-End Stone Detection Framework

To further illustrate the functionality of the proposed framework, Fig 3 presents a
representative example of the entire pipeline in action. The left panel shows an axial
CT image as input, while the right panel displays the final output after sequential pro-
cessing: anatomical plane classification, kidney localization, and kidney stone detec-
tion.
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Fig. 3. Visual Compariso of Original CT Input and Final Output Generated by the
proposed End-to-End Framework.

4 Discussion

The proposed end-to-end framework demonstrated distinct performance characteristics
across its components, reflecting their specialized roles in the diagnostic pipeline. Mo-
bileNetV2 achieved flawless performance in classifying slices. This reliability is criti-
cal for ensuring anatomically consistent processing in subsequent stages.

For kidney localization, YOLOv8n exhibited optimal (>95%) precision and recall,
with marginally higher performance in coronal slices due to their more standardized



kidney morphology. The slight axial/coronal discrepancy aligns with known challenges
in multi-planar renal imaging, where axial slices often exhibit greater anatomical vari-
ability [20].

The proposed end-to-end framework demonstrated perfect sensitivity in detecting
renal calculi, ensuring no true positive cases were missed—a critical requirement for
clinical deployment. However, the specificity revealed a conservative bias: false posi-
tives; This is mainly caused by the final stage, where hyperdense pixels (e.g., bone
fragments or contrast) exceeded the adaptive threshold (i + 26 * o) computed from the
grayscale intensity of the kidney region.

Although effective at isolating stones, this method may misclassify residual bones,
intense noise artefacts or isolated bright (specially in stone-free images). The lack of
morphological or contextual validation in this step allows such false positives to occur.

While the inward 10-pixel margin reduced this effect, some residual bony structures
at the kidney periphery remained challenging to exclude completely. This phenomenon
explains the pipeline's 68% specificity and represents a key area for improvement. Fu-
ture iterations could enhance specificity through anatomical context integration or ad-
vanced noise suppression techniques without compromising the system sensitivity.

5 Conclusion

This study presented a fully automated deep learning framework for renal calculi
detection in abdominal computed tomography scans. The framework integrates ana-
tomical plane classification using MobileNetV2, kidney localization via YOLOv8n de-
tectors, and adaptive stone segmentation.

Our system achieved clinically critical 100% sensitivity in stone detection while
maintaining reasonable precision (75.76%) and rapid processing times (<1.5s/image).
The pipeline's perfect performance in kidney identification (95-99% accuracy across
planes) and plane classification (100% accuracy) demonstrates the viability of deep
learning for automating preliminary radiological assessments.

However, the overall accuracy and precision were affected by false positives, par-
ticularly in healthy kidneys, likely due to high-intensity tissue or bone fragments within
the kidney region. This highlights a limitation of the framework, although it may be
highly sensitive, false positives undermine its usefulness in confirming the disease [21].

These findings demonstrate that deep learning techniques can reliably automate kid-
ney stone detection, offering potential support tools for radiologists. Nonetheless, fu-
ture work should focus on improving specificity, possibly by incorporating more robust
segmentation models such as U-Net architectures, refining thresholding strategies, and
expanding the training dataset—especially for the detection components. Further vali-
dation with larger and more diverse clinical datasets is also recommended to enhance
the generalizability and clinical applicability of the proposed framework.
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