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Abstract. The detection of kidney stones on computed tomography (CT) scans 

is crucial for preventing renal complications and facilitating timely treatment. 

However, traditional methods require extensive manual intervention, which can 

be laborious and error-prone. The growing use of artificial intelligence and deep 

learning techniques offers new ways to automate and enhance these diagnostic 

processes. In this context, the present study proposes an automated system that 

integrates: (1) a MobileNetV2 classifier with a high accuracy in slice orienta-

tion (axial/coronal) identification; (2) a YOLOv8n detector localizing kidneys 

with >95% accuracy; (3) adaptive stone segmentation via histogram threshold-

ing. We use a public dataset comprising 2,757 abdominal CT images, including 

both kidney stone and non-stone cases. Due to the dataset's heterogeneity, in-

cluding slices in axial/coronal planes, a MobileNetV2-based classifier was im-

plemented to automatically distinguish between these two, facilitating image 

classification. YOLOv8 is then employed for localising the kidneys, enabling 

the renal anatomy to be segmented efficiently and automatically. Evaluation on 

test set showed that the system achieves 100% sensitivity, successfully detect-

ing all true positive. However, the specificity reflects a higher rate of false pos-

itives, with a classification accuracy of 75.76% and an F1-Score of 84%. Real-

time processing was achieved, with an average inference time of <1.5s per im-

age. These results suggest that the proposed method could be integrated into 

clinical settings to accelerate and improve diagnostic accuracy. However, ad-

justments are still required to reduce false positives and validate the system on 

larger, more diverse datasets. 
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1 Introduction 

1.1 A Subsection Sample 

Kidney stones (renal calculi) represent a pervasive and increasing global health burden.  

In the year 2019 alone, 115 million cases occurred worldwide with a prevalence rate 

ranging from 1% to 20%; it is estimated that 1 in 10 people in the United States has 

been affected by this disease [1]. These crystalline deposits form in the urinary tract, 
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often causing excruciating pain, urinary obstruction, and potential renal damage when 

left undiagnosed [2]. The clinical relevance for rapid and accurate detection stems from 

three critical factors: the need to prevent irreversible kidney injury, the necessity to 

guide appropriate surgical or medical interventions, and the substantial economic costs 

of emergency department visits for acute stone episodes – estimated at $5 billion annu-

ally in the United States alone [3]. 

 

In modern practice, non-contrast computed tomography (NCCT) is the undisputed 

gold standard for stone detection, offering unparalleled sensitivity in identifying calci-

fications [4]. This imaging modality surpasses traditional radiography and ultrasonog-

raphy by reliably visualizing radiolucent stones and detecting secondary signs of ob-

struction such as perinephric stranding or hydronephrosis [5]. This diagnostic superior-

ity comes with challenges: the deluge of imaging data in busy clinical settings often 

leads to radiologist fatigue, introducing concerning rates of missed diagnoses – partic-

ularly for smaller calculi – while interobserver variability remains problematic even 

among experienced specialists [6]. 

 

In this context, the automatic medical image analysis systems, driven by computer 

vision and deep learning techniques has emerged as a promising solution to improve 

efficiency and accuracy in computer-aided medical diagnosis (CAD) [7]. Particularly, 

the Convolutional Neural Networks (CNN’s), has revolutionized the field through the 

capability of autonomously learning discriminative features across diverse imaging 

conditions [8].  

 

Therefore, this work proposes a fully automated end-to-end pipeline that integrates 

three critical stages: (1) classification of the anatomical imaging plane, (2) precise lo-

calization of the kidneys, and (3) segmentation and quantification of renal calculi. This 

sequential integration mirrors the typical radiological diagnostic workflow while re-

ducing the need for manual intervention or pre-processing [9]. This end-to-end pipeline 

harnesses two key architectures: the MobileNetV2, which is used for the effective and 

efficient slice plane classification, and the YOLOv8, which is used for the kidney lo-

calization. 

 

2 Methodology 

2.1 Dataset and Preprocessing 

The development of this work begins with the use of the publicly available Kaggle’s 

“CT KIDNEY DATASET: Normal-Cyst-Tumor and Stone” dataset, containing 12,446 

anonymous CT across four diagnostic categories. In order to focus on kidney stone 

detection, cysts (n=3,709) and tumor (n=2,283) cases were excluded, as these represent 

distinct pathological entities with different imaging characteristics.  
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This yielded two relevant categories: Normal renal anatomy (n=5,077) and con-

firmed kidney stone cases (n=1,377). To address potential class imbalance [10], a strat-

ified sampling approach was implemented. Additionally 15 images were identified as 

oblique planes through manual inspection and consequently excluded, resulting in a 

final balanced dataset of 1,362 normal cases to match the number of cases in the stone 

category.  

A significant preprocessing challenge arose from the mixture of Axial and Coronal 

imaging planes within the dataset. This heterogeneity required the development of an 

automated classification system to distinguish between these two slice orientations. To 

address this, a transfer learning classifier based on MobileNetV2 was implemented to 

identify slice orientation and automate the dataset reorganization.  

 

2.2 Architectures: MobileNetV2 and YOLOv8n 

The selection of neural network architectures was based by considering clinical com-

putational efficiency and task complexity. This section outlines the technical rationale 

behind selecting MobileNetV2 for plane classification and YOLOv8n for renal locali-

zation. Overall, the choice of MobileNetV2 and YOLOv8n responds to a strategy fo-

cused on maximizing the efficiency and portability of the system, while maintaining 

levels of accuracy suitable for application in an automated clinical environment [11]. 

 

To classify the type of CT slice, we implemented a convolutional neural network 

(CNN) based on the MobileNetV2 architecture, a lightweight CNN optimized for use 

on mobile or hardware-constrained devices. Its use of inverted residuals and depth wise 

separable convolutions reduce the number of parameters and operations while preserv-

ing accuracy.  

Heavier alternatives, such as ResNet50, InceptionV3 and EfficientNet, were consid-

ered but discarded due to their higher computational demand and longer training times. 

These features are less desirable in this context without a substantial improvement in 

accuracy for this binary task [12]. 

 

For kidney localization, YOLOv8n, a real-time object detection architecture, was 

used for its minimal computational demand and suitability for low-resource settings 

[13]. Larger variants such as YOLOv8m or YOLOv8l were discarded, due to higher 

resource consumption, and alternative architectures such as Faster R-CNN or SSD im-

ply higher latency and complexity in implementation [14]. The selected YOLO variant, 

version 8 model nano, is the lightest of the YOLOv8 family, designed to operate in low 

computational consumption environment, which aligns with the project objectives. 

 

2.3 MobileNetV2-based Classifier Training 

We implemented MobileNetV2 with pre-trained weights from ImageNet, retaining 

only its feature extraction backbone while removing the original classification layers. 
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To leverage transfer learning, we froze the base model weights, preserving its low- and 

mid-level features. This feature extractor was integrated into a custom sequential model 

to which we added a GlobalAveragePooling2D layer following the base model to re-

duce the spatial dimensions of the feature maps. Then, a dropout layer (0.2 rate) was 

included to introduce regularization to make the model learn more robust features [15].  

The final layer was a single dense neuron with a sigmoid activation function, suitable 

for a binary classification (Axial versus Coronal). The model used the Adam optimizer, 

chosen for its adaptive learning capabilities, and the binary cross-entropy loss function, 

the standard for binary classification tasks [16]. The model contained approximately 

2.26M, however, only 1,281 (exclusively to the classification head) of these were 

trained. 

2.4 YOLOv8n-based Kidney Detector Training  

The YOLOv8n model, with 72 layers and approximately 3M parameters, was initial-

ized using pre-trained weights from the COCO dataset using Ultralytics default pipe-

line. Although no layers were explicitly frozen during training, the architecture inher-

ently leveraged transfer learning by adapting its general-purpose object detection back-

bone to the specialized task of kidney localization in medical CT slices. 

The model was trained using 780 annotated CT slices with at least one kidney in-

stance, and 221 additional slices for validation. The only preprocessing applied was 

built-in resizing to 640x640px [17], with no external augmentation techniques.  

Training was set for 50 epochs, with early stopping after 10 epochs. The training 

ended at epoch 31, when validation metrics plateaued, completing in 17 minutes and 

24 seconds with a batch size of 16 using Google Colab's GPU. This setup achieved a 

mean Average Precision (mAP₅₀) of 0.992 on the validation set. On a separate test set 

(200 CT slices), the model demonstrated perfect recall by identifying all kidney in-

stances while maintaining precise anatomical localization. 

2.5 Stone Detection Algorithm 

Following the localization of the kidney using the corresponding YOLOv8n model, the 

next step involved the extraction of the region of interest (ROI) to identify renal calculi. 

The bounding box generated by YOLOv8n was used to crop the kidney area from the 

original CT image. To minimize inclusion of adjacent structures, a fixed 10px margin 

was removed from each side of the bounding box before further processing. 

 

The resulting ROI was converted to grayscale, facilitating processing with OpenCV. 

An adaptive thresholding strategy is implemented to isolate hyperdense regions indic-

ative of stones. Specifically, we computed the pixel intensity mean and standard devi-

ation within the grayscale ROI and defined a dynamic threshold as follows:  

 µ + 2σ × α = umbral (1) 
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Where µ is the mean intensity, σ is the standard deviation, and α is a scaling factor 

adjusted to enhance the sensitivity of the detection The scaling factor of 1.2 enhance 

sensitivity to regions with significantly higher intensity. 

Pixels above this computed threshold were binarized using a hard threshold opera-

tion, effectively highlighting regions with significantly higher intensity values—char-

acteristic of calcifications or stones in CT imaging [18].  

Post-thresholding, connected components were analyzed to count the number of in-

dividual stones, and their corresponding contours were overlaid CT image previously 

processed for visualization. This approach, proved effective for segmenting and quan-

tifying stones within the kidney ROI 

3 Results 

3.1 Quantitative Evaluation of MobileNetV2 and YOLOv8n 

Architectures 

The models demonstrated near-ideal learning trajectories during training [19] (see 

Fig. 1). The MobileNetV2 achieved perfect convergence by the second epoch, reaching 

100% training accuracy (loss=0.0014) while maintaining optimal validation perfor-

mance that persisted through subsequent epoch. 

a)                                                                            

      

 

 
b)  

 

c) 
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Fig. 1. Training and validation performance curves for the models. (a) MobileNetV2 Accuracy 

and loss plots; (b) YOLOv8n detector training metrics for kidney localization in Axial CT. (c) 

YOLOv8n detector training metrics for kidney localization in Coronal CT. 

 

For the YOLOv8n detectors, the Axial-plane model demonstrated a marginally 

higher recall but slightly lower precision compared to the Coronal-plane variant. This 

reflects an accuracy gap of 0.5% in their respective test sets. Both YOLO models 

achieved balanced F1-scores (Axial=97.7, Coronal=97.44), with error rates below 5%. 

This indicates robust generalization, despite the inherently higher anatomical variabil-

ity of the axial plane. 

Table 1. Comparative performance metrics across models on the test set. 

Model Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1-Score 

(%) 

Error 

(%) 

MobileNetV2 100 100 100 100 0 

YOLOv8n (Axial) 96.95 98.45 95.5 97.7 4.5 

YOLOv8n (Coro-

nal) 
99.48 95.48 

95.0 97.44 5 

 

3.2 Quantitative Performance of the End-to-End Stone Detection 

Framework 

The integrated pipeline demonstrated robust performance when evaluated on unseen 

CT images (see Fig. 2), achieving a perfect recall while maintaining a precision of 

75.76%. This resulted in an overall accuracy of 84% for stone detection, with an error 

rate of 16%. The framework maintained this performance across both anatomical planes 

with no significant difference in detection rates between them.  

The system showed particular strength in identifying true positive cases, as evi-

denced by the complete recall score, though some false positives were observed. The 

end-to-end processing time averaged under 1.35 seconds per image on standard GPU 

hardware, demonstrating clinical applicability. 
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Fig. 2. Performance Metrics of the End-to-End Stone Detection Framework 

 

To further illustrate the functionality of the proposed framework, Fig 3 presents a 

representative example of the entire pipeline in action. The left panel shows an axial 

CT image as input, while the right panel displays the final output after sequential pro-

cessing: anatomical plane classification, kidney localization, and kidney stone detec-

tion. 

  
Fig. 3. Visual Comparison of Original CT Input and Final Output Generated by the 

proposed End-to-End Framework. 

 

4 Discussion 

The proposed end-to-end framework demonstrated distinct performance characteristics 

across its components, reflecting their specialized roles in the diagnostic pipeline. Mo-

bileNetV2 achieved flawless performance in classifying slices. This reliability is criti-

cal for ensuring anatomically consistent processing in subsequent stages. 

 

For kidney localization, YOLOv8n exhibited optimal (>95%) precision and recall, 

with marginally higher performance in coronal slices due to their more standardized 
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kidney morphology. The slight axial/coronal discrepancy aligns with known challenges 

in multi-planar renal imaging, where axial slices often exhibit greater anatomical vari-

ability [20]. 

 

The proposed end-to-end framework demonstrated perfect sensitivity in detecting 

renal calculi, ensuring no true positive cases were missed—a critical requirement for 

clinical deployment. However, the specificity revealed a conservative bias: false posi-

tives; This is mainly caused by the final stage, where hyperdense pixels (e.g., bone 

fragments or contrast) exceeded the adaptive threshold (μ + 2σ × α) computed from the 

grayscale intensity of the kidney region.  

Although effective at isolating stones, this method may misclassify residual bones, 

intense noise artefacts or isolated bright (specially in stone-free images). The lack of 

morphological or contextual validation in this step allows such false positives to occur. 

While the inward 10-pixel margin reduced this effect, some residual bony structures 

at the kidney periphery remained challenging to exclude completely. This phenomenon 

explains the pipeline's 68% specificity and represents a key area for improvement. Fu-

ture iterations could enhance specificity through anatomical context integration or ad-

vanced noise suppression techniques without compromising the system sensitivity. 

 

5 Conclusion 

This study presented a fully automated deep learning framework for renal calculi 

detection in abdominal computed tomography scans. The framework integrates ana-

tomical plane classification using MobileNetV2, kidney localization via YOLOv8n de-

tectors, and adaptive stone segmentation.  

Our system achieved clinically critical 100% sensitivity in stone detection while 

maintaining reasonable precision (75.76%) and rapid processing times (<1.5s/image). 

The pipeline's perfect performance in kidney identification (95-99% accuracy across 

planes) and plane classification (100% accuracy) demonstrates the viability of deep 

learning for automating preliminary radiological assessments. 

However, the overall accuracy and precision were affected by false positives, par-

ticularly in healthy kidneys, likely due to high-intensity tissue or bone fragments within 

the kidney region. This highlights a limitation of the framework, although it may be 

highly sensitive, false positives undermine its usefulness in confirming the disease [21]. 

These findings demonstrate that deep learning techniques can reliably automate kid-

ney stone detection, offering potential support tools for radiologists. Nonetheless, fu-

ture work should focus on improving specificity, possibly by incorporating more robust 

segmentation models such as U-Net architectures, refining thresholding strategies, and 

expanding the training dataset—especially for the detection components. Further vali-

dation with larger and more diverse clinical datasets is also recommended to enhance 

the generalizability and clinical applicability of the proposed framework. 
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