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Abstract. Dental diseases such as caries, bone loss, and periapical lesions are among the 

most common oral health issues, and their early detection is essential to avoid long-term compli-

cations. Due to the visual similarity of these conditions in dental radiographs, accurate diagnosis 

can be challenging, even for experienced professionals. This study explores the application of 

convolutional neural networks for the automated classification of dental radiographs into four 

categories: healthy, caries, bone loss, and periapical lesion. Transfer learning was employed us-

ing four state-of-the-art pretrained convolutional neural networks architectures: InceptionV3, 

ResNet50, EfficientNetB0, and MobileNetV2. A custom dataset was compiled and preprocessed, 

although limited image availability posed a major constraint during training. The models were 

adapted by incorporating task-specific classification layers aimed at identifying dental condi-

tions. To ensure a fair comparison, all models were trained using a standardized pipeline, with 

identical preprocessing procedures, input resolution, batch size, and training settings. Experi-

mental results revealed that InceptionV3 achieved the highest validation accuracy and con-

sistency, outperforming the other models, which showed greater sensitivity to data scarcity. Per-

formance was further evaluated using accuracy and loss along with confusion matrices, confirm-

ing InceptionV3’s superior class-wise performance and more stable training behavior. Despite 

the limited dataset, the findings highlight the feasibility of integrating convolutional neural net-

works-based diagnostic tools in dental screening workflows, while emphasizing the need for 

larger, high-quality radiographic datasets for robust performance.  
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1 Introduction 

Oral diseases remain a major public health issue worldwide, affecting people across 

all ages. Among the most prevalent conditions are dental caries, bone loss, and periap-

ical lesions, each of which can cause significant pain, tooth loss, and reduced quality of 

life if not detected and treated early [1], [2]. Dental caries result from the deminerali-

zation of enamel due to bacterial acid production, while bone loss commonly occurs as 

a consequence of periodontal disease, leading to the destruction of alveolar  bone [3]. 

Periapical lesions develop as inflammatory responses to infections in the dental pulp, 

frequently necessitating endodontic intervention [4]. Although these diseases differ in 

etiology, they often exhibit highly similar visual features in dental radiographs, making 
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it difficult to distinguish among them, even for experienced clinicians [5]. Radiographic 

imaging remains the primary diagnostic tool, yet overlapping appearances and subtle 

morphological differences pose a diagnostic challenge. 

Convolutional neural networks (CNNs) have recently gained attention in medical 

image analysis due to their ability to autonomously learn complex spatial hierarchies 

and patterns from raw images, improving diagnostic accuracy [6]. Pretrained CNN ar-

chitectures like InceptionV3, ResNet50, EfficientNetB0, and MobileNetV2 have been 

successfully applied in various domains through transfer learning, which helps to miti-

gate data scarcity by leveraging knowledge from large datasets [7]. 

Nevertheless, despite the growing use of CNNs in medical imaging, their application 

to dental radiographic diagnosis is still limited, with few studies conducting compre-

hensive comparisons of multiple CNN models for the classification of common dental 

diseases [8]. This study aims to address this gap by evaluating the performance of four 

leading CNN architectures on a custom dental radiograph dataset. 

2 Methodology 

2.1 Dataset  

Two publicly available datasets from Kaggle were used for this study. The first, the 

X-Ray Panoramic Dataset, contains panoramic dental radiographs labeled with over 30 

different conditions. From this dataset, only images corresponding to the three target 

pathologies dental caries, bone loss, and periapical lesions were extracted. The second 

dataset, the Dental OPG X-ray Dataset, was used to obtain images of healthy teeth. 

Due to data imbalance and availability issues, the dataset had to be constrained. Alt-

hough over 1000 images were available for the pathological classes, only 223 images 

of healthy teeth were found. To maintain balance, a subset of the pathological images 

was randomly selected to match the number of healthy samples, resulting in a total 

dataset of 892 images (223 for each class). 

2.2 Pre-processing 

 To ensure compatibility with the selected convolutional neural network (CNN) ar-

chitectures, all radiographic images were first resized to 224×224 pixels. This resolu-

tion is the standard input size required by most pretrained. Given that the radiographs 

in the datasets were grayscale, but the pretrained models expect three-channel RGB 

images, all images were converted to RGB format. Additionally, pixel values were nor-

malized by scaling the intensity values to the range [0,1], which helps improve conver-

gence speed and model stability during training.  

To address the class imbalance where the healthy class was significantly underrepre-

sented data augmentation was applied on EfficientNetB0 and MobileNetV2 during train-

ing. The augmentation included random rotations, horizontal flips, zooming, and slight 

translations. The final dataset was split into training (75%), validation (10%), and test-

ing (15%) sets using a stratified split to preserve class distribution across all subsets. 
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2.3 CNN Architectures 

The choice of convolutional neural network (CNN) architectures in this study was 

guided by their proven performance in image classification tasks. Four architectures 

were evaluated: InceptionV3, ResNet50, EfficientNetB0, and MobileNetV2. Incep-

tionV3 employs parallel convolutional operations to extract multi-scale features effi-

ciently, making it particularly suitable for detecting subtle patterns in medical images. 

ResNet50 introduces residual connections that ease the training of deeper networks by 

mitigating vanishing gradients. EfficientNetB0 balances network depth, width, and res-

olution using compound scaling, optimizing performance with fewer parameters. Mo-

bileNetV2 is designed for lightweight applications, using depth wise separable convo-

lutions to reduce complexity. 

2.4 Training  

To enable the use of pretrained convolutional neural networks (CNNs) while adapt-

ing them to the classification of dental radiographs, a transfer learning approach was 

employed. For each the convolutional base was balanced with the same weights, and a 

number of layers were frozen to preserve previously learned low-level features. Specif-

ically, 146 layers were frozen in ResNet50, 145 in MobileNetV2, 200 in Efficient-

NetB0, and 300 in InceptionV3.  

On top of each frozen base, a custom classification head was added, consisting of a 

Global Average Pooling layer to reduce dimensionality, followed by one or more Dense 

layers and a final output layer with a softmax activation for multi -class prediction 

across the four target classes: healthy, caries, bone loss, and periapical lesion. 

The dataset was divided into 14 batches with a batch size of 64, resulting in 11 

batches used for training, 1 for validation, and 2 for testing. The models were trained 

using the Adam optimizer and categorical cross-entropy loss, with early stopping based 

on validation accuracy to prevent overfitting. 

3 Results 

The goal is to compare the performance of the four architectures on the small dataset 

of dental radiographies using fine-tuning and to assess their generalization capacity 

based on standard evaluation metrics: accuracy, precision, recall, F1-score, and confu-

sion matrix. 

During training, ResNet50 showed progressive improvement on the training set, 

reaching a maximum accuracy of 69.4% by epoch 24. However, the validation loss 

increased significantly during the final epochs, while validation accuracy fluctuated 

peaking at just 60.9% indicating clear overfitting. The classification report revealed a 
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weighted F1-score of only 0.12, with all predictions concentrated in the “Healthy” 

class, leaving the other three categories unrecognized.  

Figure 1. Accuracy and loss graph of the train performance for ResNet50. Source: Own elabo-

ration 

 
EfficientNetB0, although faster to train, demonstrated similar results. Training ac-

curacy peaked at 42.9%, and validation loss rose steadily to 13.3. Validation accuracy 

remained low (up to 39) the model predicted only one class during testing. The 

weighted F1-score was again 0.12. 

MobileNetV2, however, showed the best relative performance. Despite not having 

the highest training accuracy (which peaked at 56.9%), it exhibited greater stability 

during validation, achieving a maximum validation accuracy of 59.4% with a more 

controlled loss curve. On the test set, MobileNet reached an accuracy of 50.8%. The 

weighted F1-score was 0.36, significantly better than the others.  

In contrast, InceptionV3 achieved the best overall performance among the evaluated 

architectures. During training, it reached a maximum accuracy of 80.4%, with a vali-

dation accuracy of 85.9% and a validation loss of 0.3795—indicative of strong conver-

gence and generalization. On the test set, it achieved an outstanding accuracy of 93%, 

with a weighted F1-score of 0.93. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2, 3. Global F1-Score for InceptionV3, ResNet50, EfficientNetB0, and MobileNetV2. 

InceptionV3 individual class accuracy. Source: Own elaboration 
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4 Discussion 

In this study, InceptionV3 achieved superior performance in classifying dental radi-

ographs, with an accuracy of 93% and a weighted F1-score of 0.93. This aligns with 

findings who reported high accuracy using CNN-based models for classifying decidu-

ous and permanent teeth from panoramic images [9].  

MobileNetV2, while more lightweight, attained a test accuracy of 50.8% and a 

weighted F1-score of 0.36. Despite its lower performance compared to InceptionV3, its 

efficiency makes it suitable for applications with limited computational resources [10]. 

ResNet50 and EfficientNetB0 exhibited lower accuracies of 27% and 39%, respec-

tively. These results may be attributed to overfitting and sensitivity to data imbalance 

[11]. Data augmentation was essential to address class imbalance, particularly given 

the underrepresentation of healthy samples, and it follows established practices to en-

hance model generalization in medical imaging [12] [13]. 

These findings highlight the relevance of model selection based on dataset size, bal-

ance, and diagnostic complexity. InceptionV3 emerges as a promising architecture for 

automatic dental diagnosis from radiographs, particularly in identifying early-stage pa-

thologies such as caries or periapical lesions [14] [15]. 

5 Conclusion 

This study demonstrates the effectiveness of deep learning models, particularly con-

volutional neural networks, in the automatic classification of dental radiographs for the 

detection of pathologies such as caries and periapical lesions. By leveraging pretrained 

architectures like EfficientNetB0 and MobileNetV2, combined with appropriate pre-

processing steps such as image resizing, RGB conversion, and normalization we en-

sured model compatibility and enhanced training performance 

The results highlight the importance of selecting the appropriate CNN architecture, 

as different models vary in complexity, accuracy, and computational cost. Efficient-

NetB0, for instance, provided a balance between accuracy and efficiency.  

The study also highlighted the importance of adequate preprocessing steps and data 

augmentation to address class imbalance and improve model generalization. These 

combined strategies ensured that the models, especially InceptionV3, could effectively 

learn from the limited and heterogeneous dataset. 

The success of InceptionV3 can be attributed to its unique architectural design, 

which balances depth and computational efficiency through its inception modules, al-

lowing for multi-scale feature extraction. This advantage was clearly reflected in the 

model’s superior validation accuracy (85.94%) and strong classification metrics across 

all classes, including caries, periapical lesions, and healthy cases. 

Overall, the results confirm that carefully selecting the right CNN architecture, like 

InceptionV3, is critical for achieving high diagnostic accuracy in medical image anal-

ysis tasks. Future work should focus on expanding datasets for a better performance. 
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